

Renewable Energy Projections as Published in the National Renewable Energy Action Plans of the European Member States

Covering all 27 EU Member States with updates for 20 Member States

L.W.M. Beurskens M. Hekkenberg P. Vethman

ECN-E--10-069 28 November 2011

European Environment Agency

Acknowledgement

This report has been written with financial support from the European Environment Agency (EEA). The EEA project manager was David Owain Clubb.

The authors acknowledge the following persons for their assistance in compiling this report: Heather Haydock (AEA) and Tjaša Bole, Bernard Bulder, Joost Gerdes, Manuela Loos, Linda Pronk, Hilke Rösler, Cees Volkers, Adriaan van der Welle and Remko Ybema (all from ECN).

The ECN number of the project resulting in this report is 6.00512. The authors can be contacted for enquiries, corrections or other remarks at nreap@ecn.nl.

This document has been typeset in LATEX (http://www.latex-project.org).

Disclaimer

This report has been compiled with great care. Focus has been on data tables in the original NREAP documents and in all supplementary information provided by the European Member States. The original NREAP documents remain the authentic versions. The Energy research Centre of the Netherlands (ECN) and the European Environment Agency (EEA) cannot assure any responsibility for any remaining errors, if and when applicable, of the data in this report and in the underlying database.

Abstract

This report presents an overview of all data that have been published in the National Renewable Energy Action Plans (NREAPs). In this version of the document (dated 28 November 2011) all 27 European Union Member States have been covered, and for 20 countries supplementary information provided by the Member States has been integrated. These Member States are: Austria, Belgium, Bulgaria, Cyprus, Denmark, Finland, France, Greece, Hungary, Ireland, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Portugal, Romania, Spain, Sweden and the United Kingdom. For the following Member States no additional information is available: the Czech Republic, Estonia, Germany, Italy, Poland, Slovakia and Slovenia, so data from the original NREAP have been used for these countries.

The report highlights a set of cross-sections of the database that has been compiled from the NREAP documents. The underlying database and the images from the report are available at http://www.ecn.nl/nreap. Moreover a separate summary report is available from this location.

Keywords

National Renewable Energy Action Plans (NREAPs), renewable energy in the European Union

Scanning the two-dimensional barcode (QR) at the left with a camera phone equipped with appropriate software will open the URL http://www.ecn.nl/nreap, which redirects to the ECN Policy Studies project pages (http://www.ecn.nl/units/ps/themes/renewable-energy/projects/nreap). From this location the reports, the database files (in comma-separated values and a spreadsheet in Open Document Format) and the image files are available for download.

Contents

Su	mmar	У		17
	Gros	s final e	nergy consumption	18
	All r	enewabl	le energy sources (RES)	18
	The	share of	renewable energy in gross final energy consumption	19
	Deta	iled info	ormation from RES-specific projections	21
	Diffe	erences l	between the two approaches	26
1	Inter	duction		29
1	1.1			29 29
	1.1			29 29
	1.2			29 30
			1	
	1.4			30
		1.4.1	, and the second	31
		1.4.2	<u>, </u>	31
	1.5			33
		1.5.1		33
		1.5.2		33
		1.5.3	1	33
		1.5.4	Denmark	34
		1.5.5	Germany	34
		1.5.6	Estonia	34
		1.5.7	Ireland	34
		1.5.8	Greece	34
		1.5.9	Spain	35
		1.5.10	France	35
		1.5.11	Italy	35
				35
		1.5.13	Latvia	35
		1.5.14	Lithuania	36
		1.5.15	Luxembourg	36
		1.5.16	Hungary	36
				36
				36
				37
				37
				37
				37
				37 37
				- '

	1.5.24	Slovakia	37
	1.5.25	Finland	38
	1.5.26	Sweden	38
	1.5.27	United Kingdom	38
1.6	A livin	g document	38
1.7	Change	es compared to previous versions of the report	38
1.8	'Furthe	er information' provided by the Member States (update 2011)	42
	1.8.1	General remarks	42
	1.8.2	Belgium	42
	1.8.3	Bulgaria	43
	1.8.4	Czech Republic	43
	1.8.5	Denmark	44
	1.8.6	Germany	44
	1.8.7	Estonia	44
	1.8.8	Ireland	44
	1.8.9	Greece	44
	1.8.10	Spain	45
	1.8.11	France	45
	1.8.12	Italy	45
	1.8.13	Cyprus	46
	1.8.14	Latvia	46
	1.8.15	Lithuania	46
	1.8.16	Luxembourg	46
	1.8.17	Hungary	46
	1.8.18	Malta	47
	1.8.19	Netherlands	47
	1.8.20	Austria	47
	1.8.21	Poland	47
	1.8.22	Portugal	47
	1.8.23	Romania	47
	1.8.24	Slovenia	48
	1.8.25	Slovakia	48
	1.8.26	Finland	48
	1.8.27	Sweden	48
	1.8.28	United Kingdom	49
Targe	ets and t	rajectories	51

61

2

Gross final energy consumption

Renewable aggregate data as reported in NREAP	75
Biomass supply	81
RES excess and deficit for flexible mechanisms	93
Hydropower	97
Deep geothermal electricity	107
Solar electricity	115
Tidal, wave and ocean energy	125
Wind power	133
Biomass electricity	143
Deep geothermal thermal energy	153
Solar thermal energy	159
Biomass thermal energy	165
Renewable energy from heat pumps	171
Bioethanol / bio-ETBE in transport	177
Biodiesel in transport	183
Hydrogen from renewables in transport	189
Renewable electricity in transport	195
Other biofuels in transport	201
Country Tables	207
Belgium	208
Bulgaria	210
Czech Republic	212
Denmark	214
Germany	216
ECN-E10-069	5

Estonia	218
Ireland	220
Greece	222
Spain	224
France	226
Italy	228
Cyprus	230
Latvia	232
Lithuania	234
Luxembourg	236
Hungary	238
Malta	240
Netherlands	242
Austria	244
Poland	246
Portugal	248
Romania	250
Slovenia	252
Slovakia	254
Finland	256
Sweden	258
United Kingdom	260
European Union, EU-27	262
Index	264

List of Figures

1	Bias in countries based on population and surface area	32
2	Renewable energy shares according to Annex I and NREAP documents [%]	52
3	Cumulative hydropower electric capacity [GW]	98
4	Calculated annual growth for electric capacity from hydropower [%/year]	99
5	Cumulative hydropower electricity generation [TWh]	101
6	Calculated annual growth for electricity generation from hydropower [%/year] .	102
7	Calculated average number of full load hours for hydropower [hrs/year]	104
8	Calculated per capita electricity generation for hydropower [kWh/cap]	105
9	Calculated per area electricity generation for total hydropower [MWh/km²]	106
10	Cumulative geothermal electric capacity [MW]	108
11	Calculated annual growth for capacity of geothermal electricity [%/year]	109
12	Cumulative geothermal electricity generation [GWh]	110
13	Calculated annual growth for generation of geothermal electricity [%/year]	111
14	Calculated average number of full load hours for geothermal electricity [hrs/year]	112
15	Calculated per capita generation of geothermal electricity [kWh/cap]	113
16	Calculated per area generation of geothermal electricity [MWh/km²]	114
17	Cumulative solar electric capacity [GW]	116
18	Calculated annual growth for capacity of solar electricity [%/year]	117
19	Cumulative solar electricity generation [TWh]	119
20	Calculated annual growth for generation from solar electricity [%/year]	120
21	Calculated average number of full load hours for solar electricity [hrs/year]	122
22	Calculated per capita generation for solar electricity [kWh/cap]	123
23	Calculated per area generation for total solar electricity [MWh/km²]	124
24	Tidal, wave and ocean energy electric capacity [MW]	126
25	Calculated growth for capacity from tidal, wave and ocean energy [%/year]	127
26	Tidal, wave and ocean energy electricity generation [GWh]	128
27	Calculated growth for electricity from tidal, wave and ocean energy [%/year]	129
28	Calculated number of full load hours for tidal, wave and ocean energy [hrs/year]	130
29	Calculated per capita electricity from tidal, wave and ocean energy [kWh/cap] .	131
30	Calculated per area electricity from tidal, wave and ocean energy [MWh/km²] .	132
31	Cumulative wind power electric capacity [GW]	134
32	Calculated annual growth for electric capacity from wind power [%/year]	135
33	Cumulative wind power electricity generation [TWh]	137
34	Calculated annual growth for electricity generation from wind power [%/year] .	138
35	Calculated average number of full load hours for wind power [hrs/year]	140
36	Calculated per capita electricity generation for wind power [kWh/cap]	141
37	Calculated per area electricity generation for total wind power [MWh/km²]	142

38	Cumulative biomass electric capacity [GW]	144
39	Calculated annual growth for capacity of biomass electricity [%/year]	145
40	Cumulative biomass electricity generation [TWh]	147
41	Calculated annual growth for generation from biomass electricity [%/year]	148
42	Calculated average number of full load hours for biomass electricity [hrs/year] .	150
43	Calculated per capita generation for biomass electricity [kWh/cap]	151
44	Calculated per area generation for total biomass electricity [MWh/km²]	152
45	Cumulative geothermal heat energy [ktoe]	154
46	Calculated annual growth for energy from geothermal heat [%/year]	155
47	Calculated per capita energy for geothermal heat [toe/1000 inhabitants]	156
48	Calculated per area energy for total geothermal heat [toe/km²]	157
49	Cumulative solar thermal energy [ktoe]	160
50	Calculated annual growth for energy from solar thermal [%/year]	161
51	Calculated per capita energy for solar thermal [toe/1000 inhabitants]	162
52	Calculated per area energy for total solar thermal [toe/km 2]	163
53	Cumulative biomass heat energy [Mtoe]	166
54	Calculated annual growth for energy from biomass heat [%/year]	167
55	Calculated per capita energy for biomass heat [toe/1000 inhabitants]	169
56	Calculated per area energy for total biomass heat [toe/km²]	170
57	Cumulative heat pump thermal energy [ktoe]	172
58	Calculated annual growth for thermal energy from heat pump [%/year]	173
59	Calculated per capita thermal energy for heat pump [toe/1000 inhabitants]	175
60	Calculated per area thermal energy for total heat pumps [toe/km 2]	176
61	Bioethanol / bio-ETBE in renewable transport [ktoe]	178
62	Calculated growth for bioethanol / bio-ETBE in renewable transport [%/year]	179
63	Calculated per capita bioethanol / bio-ETBE [toe/1000 inhabitants]	181
64	Calculated per area bioethanol / bio-ETBE [toe/km²]	182
65	Biodiesel in renewable transport [ktoe]	184
66	Calculated annual growth for biodiesel in renewable transport [%/year]	185
67	Calculated per capita in renewable transport for biodiesel [toe/1000 inhabitants]	187
68	Calculated per area in renewable transport for total biodiesel [toe/km 2]	188
69	Hydrogen from renewables in transport [ktoe]	190
70	Calculated annual growth for hydrogen from renewables in transport [%/year] .	191
71	Calculated per capita renewable hydrogen in transport [toe/1000 inhabitants]	192
72	Calculated per area renewable hydrogen in transport [toe/km²]	193
73	Renewable electricity in transport [ktoe]	196
74	Calculated annual growth for renewable electricity in transport [%/year]	197
75	Calculated per capita for renewable electricity in transport [toe/1000 inhabitants]	199
76	Calculated per area for total renewable electricity in transport [toe/km ²]	200

77	Other biofuels in transport [ktoe]	202
78	Calculated growth for other biofuels in transport [%/year]	203
79	Calculated per capita values for other biofuels in transport [toe/1000 inhabitants]	205
80	Calculated per area values for total other biofuels in transport [toe/km ²]	206

List of Tables

1	Gross final energy consumption in the reference scenario for 27 countries	10
2	Gross final energy consumption in the additional efficiency scenario for 27 countries	19
3	Total renewable energy for 27 countries	20
4	Gross final energy consumption in the additional efficiency scenario for 27 countries	20
5	Total renewable electricity capacity and energy for 27 countries	22
6	Annual growth of renewable electricity capacity and energy for 27 countries	23
7	Total renewable heating and cooling energy for 27 countries	24
8	Annual growth for renewable heating and cooling energy for 27 countries	24
9	Total renewable transport energy for 27 countries	25
10	Annual growth for renewable transport for 27 countries	25
11	Total renewable energy for 27 countries	26
12	Gross final energy consumption in the additional efficiency scenario for 27 countries	27
13	List of NREAP releases	30
14	Country data used for calculating indicators	32
15	NREAP update per Member State	39
16	Data table update per Member State	43
17	Renewable energy shares from Annex I of the Directive [%]	51
18	Renewable energy shares according to Annex I and NREAP documents [%]	52
19	Belgium: indicative trajectory for the renewable energy share [%]	53
20	Bulgaria: indicative trajectory for the renewable energy share [%]	53
21	Czech Republic: indicative trajectory for the renewable energy share [%]	53
22	Denmark: indicative trajectory for the renewable energy share [%]	53
23	Germany: indicative trajectory for the renewable energy share [%]	54
24	Estonia: indicative trajectory for the renewable energy share [%]	54
25	Ireland: indicative trajectory for the renewable energy share [%]	54
26	Greece: indicative trajectory for the renewable energy share [%]	54
27	Spain: indicative trajectory for the renewable energy share [%]	55
28	France: indicative trajectory for the renewable energy share [%]	55
29	Italy: indicative trajectory for the renewable energy share [%]	55
30	Cyprus: indicative trajectory for the renewable energy share [%]	55
31	Latvia: indicative trajectory for the renewable energy share [%]	56
32	Lithuania: indicative trajectory for the renewable energy share [%]	56
33	Luxembourg: indicative trajectory for the renewable energy share [%]	56
34	Hungary: indicative trajectory for the renewable energy share [%]	56
35	Malta: indicative trajectory for the renewable energy share [%]	57
36	Netherlands: indicative trajectory for the renewable energy share [%]	57
37	Austria: indicative trajectory for the renewable energy share [%]	57

38	Poland: indicative trajectory for the renewable energy share [%]	57
39	Portugal: indicative trajectory for the renewable energy share [%]	58
40	Romania: indicative trajectory for the renewable energy share [%]	58
41	Slovenia: indicative trajectory for the renewable energy share [%]	58
42	Slovakia: indicative trajectory for the renewable energy share [%]	58
43	Finland: indicative trajectory for the renewable energy share [%]	59
44	Sweden: indicative trajectory for the renewable energy share [%]	59
45	United Kingdom: indicative trajectory for the renewable energy share [%]	59
46	Availability of scenarios and the aviation reduction	63
47	Final consumption electricity for reference scenario [ktoe]	64
48	Final consumption electricity for additional energy efficiency scenario [ktoe]	65
49	Final consumption heating and cooling for reference scenario [ktoe]	66
50	Final consumption heating and cooling for additional efficiency scenario [ktoe] .	67
51	Final consumption transport for reference scenario [ktoe]	68
52	Final consumption transport for additional energy efficiency scenario [ktoe]	69
53	Final consumption before aviation reduction for reference scenario [ktoe]	70
54	Final consumption before aviation reduction for additional efficiency [ktoe]	71
55	Final consumption after aviation reduction for reference scenario [ktoe]	72
56	Final consumption after aviation reduction for additional energy efficiency [ktoe]	73
57	Aggregate RES according to NREAP in 2005	76
58	Aggregate RES according to NREAP in 2010	77
59	Aggregate RES according to NREAP in 2015	78
60	Aggregate RES according to NREAP in 2020	79
61	Biomass supply from forestry (total)	82
62	Biomass supply from forestry (direct)	83
63	Biomass supply from forestry (indirect)	84
64	Biomass supply from agriculture and fisheries (total)	85
65	Biomass supply from agriculture and fisheries (direct)	86
66	Biomass supply from agriculture and fisheries (by-products)	87
67	Biomass supply from waste (total)	88
68	Biomass supply from waste (municipal)	89
69	Biomass supply from waste (industrial)	90
70	Biomass supply from waste (sewage sludge)	91
71	Land used for short rotation trees and other energy crops [ha]	92
72	Estimated excess in NREAP [ktoe]	94
73	Estimated deficit in NREAP [ktoe]	95
74	Cumulative hydropower electric capacity [MW]	98
75	Calculated annual growth for electric capacity from hydropower [%/year]	99
76	Hydropower electric capacity including category breakdown [MW]	100

77	Cumulative hydropower electricity generation [GWh]	101
78	Calculated annual growth for electricity generation from hydropower [%/year] .	102
79	Hydropower electricity generation including category breakdown [GWh]	103
80	Calculated average number of full load hours for hydropower [hrs/year]	104
81	Calculated per capita electricity generation for hydropower [kWh/cap]	105
82	Calculated per area electricity generation for total hydropower $[MWh/km^2]$	106
83	Cumulative geothermal electric capacity [MW]	108
84	Calculated annual growth for capacity of geothermal electricity [%/year]	109
85	Cumulative geothermal electricity generation [GWh]	110
86	Calculated annual growth for generation of geothermal electricity [%/year]	111
87	Calculated average number of full load hours for geothermal electricity [hrs/year]	112
88	Calculated per capita generation of geothermal electricity [kWh/cap]	113
89	Calculated per area generation of geothermal electricity [MWh/km²]	114
90	Cumulative solar electric capacity [MW]	116
91	Calculated annual growth for capacity of solar electricity [%/year]	117
92	Solar electric capacity including category breakdown [MW]	118
93	Cumulative solar electricity generation [GWh]	119
94	Calculated annual growth for generation from solar electricity [%/year]	120
95	Solar electricity generation including category breakdown [GWh]	121
96	Calculated average number of full load hours for solar electricity [hrs/year]	122
97	Calculated per capita generation for solar electricity [kWh/cap]	123
98	Calculated per area generation for total solar electricity [MWh/km 2]	124
99	Tidal, wave and ocean energy electric capacity [MW]	126
100	Calculated growth for capacity from tidal, wave and ocean energy [%/year]	127
101	Tidal, wave and ocean energy electricity generation [GWh]	128
102	Calculated growth for electricity from tidal, wave and ocean energy [%/year]	129
103	Calculated number of full load hours for tidal, wave and ocean energy [hrs/year]	130
104	Calculated per capita electricity from tidal, wave and ocean energy [kWh/cap] .	131
105	Calculated per area electricity from tidal, wave and ocean energy $[MWh/km^2]$.	132
106	Cumulative wind power electric capacity [MW]	134
107	Calculated annual growth for electric capacity from wind power [%/year]	135
108	Wind power electric capacity including category breakdown [MW]	136
109	Cumulative wind power electricity generation [GWh]	137
110	Calculated annual growth for electricity generation from wind power [%/year] .	138
111	Wind power electricity generation including category breakdown [GWh]	139
112	Calculated average number of full load hours for wind power [hrs/year]	140
113	Calculated per capita electricity generation for wind power [kWh/cap]	141
114	Calculated per area electricity generation for total wind power $[MWh/km^2]$	142
115	Cumulative biomass electric capacity [MW]	144

116	Calculated annual growth for capacity of biomass electricity [%/year]	145
117	Biomass electric capacity including category breakdown [MW]	146
118	Cumulative biomass electricity generation [GWh]	147
119	Calculated annual growth for generation from biomass electricity [%/year]	148
120	Biomass electricity generation including category breakdown [GWh]	149
121	Calculated average number of full load hours for biomass electricity [hrs/year] .	150
122	Calculated per capita generation for biomass electricity [kWh/cap]	151
123	Calculated per area generation for total biomass electricity [MWh/km²]	152
124	Cumulative geothermal heat energy [ktoe]	154
125	Calculated annual growth for energy from geothermal heat [%/year]	155
126	Calculated per capita energy for geothermal heat [toe/1000 inhabitants]	156
127	Calculated per area energy for total geothermal heat [toe/km 2]	157
128	Cumulative solar thermal energy [ktoe]	160
129	Calculated annual growth for energy from solar thermal [%/year]	161
130	Calculated per capita energy for solar thermal [toe/1000 inhabitants]	162
131	Calculated per area energy for total solar thermal [toe/km²]	163
132	Cumulative biomass heat energy [ktoe]	166
133	Calculated annual growth for energy from biomass heat [%/year]	167
134	Biomass heat energy including category breakdown [ktoe]	168
135	Calculated per capita energy for biomass heat [toe/1000 inhabitants]	169
136	Calculated per area energy for total biomass heat [toe/km²]	170
137	Cumulative heat pump thermal energy [ktoe]	172
138	Calculated annual growth for thermal energy from heat pump [%/year]	173
139	Heat pump thermal energy including category breakdown [ktoe]	174
140	Calculated per capita thermal energy for heat pump [toe/1000 inhabitants]	175
141	Calculated per area thermal energy for total heat pumps [toe/km 2]	176
142	Bioethanol / bio-ETBE in renewable transport [ktoe]	178
143	Calculated growth for bioethanol / bio-ETBE in renewable transport $[\%/year]$	179
144	Bioethanol / bio-ETBE in renewable transport including subcategories [ktoe]	180
145	Calculated per capita bioethanol / bio-ETBE [toe/1000 inhabitants]	181
146	Calculated per area bioethanol / bio-ETBE [toe/km²]	182
147	Biodiesel in renewable transport [ktoe]	184
148	Calculated annual growth for biodiesel in renewable transport [%/year]	185
149	Biodiesel in renewable transport including category breakdown [ktoe]	186
150	Calculated per capita in renewable transport for biodiesel [toe/1000 inhabitants]	187
151	Calculated per area in renewable transport for total biodiesel [toe/km 2]	188
152	Hydrogen from renewables in transport [ktoe]	190
153	Calculated annual growth for hydrogen from renewables in transport $[\%/\text{year}]$.	191
154	Calculated per capita renewable hydrogen in transport [toe/1000 inhabitants]	192

155	Calculated per area renewable hydrogen in transport [toe/km ²]	193
156	Renewable electricity in transport [ktoe]	196
157	Calculated annual growth for renewable electricity in transport [%/year]	197
158	Renewable electricity in transport including category breakdown [ktoe]	198
159	Calculated per capita for renewable electricity in transport [toe/1000 inhabitants]	199
160	Calculated per area for total renewable electricity in transport [toe/km 2]	200
161	Other biofuels in transport [ktoe]	202
162	Calculated growth for other biofuels in transport [%/year]	203
163	Other biofuels in transport including category breakdown [ktoe]	204
164	Calculated per capita values for other biofuels in transport [toe/1000 inhabitants]	205
165	Calculated per area values for total other biofuels in transport [toe/km²]	206

Summary

The Renewable Energy Directive (2009/28/EC)¹ addresses various subjects related to the development of renewable energies in the European Member States, among others the legally binding share of renewable energy in gross final energy consumption. In Article 4 of the Directive each Member State is requested to provide a National Renewable Energy Action Plan (NREAP) by 30 June 2010. In order to draft this plan, a template² was published by the Commission. Each Member State is requested to complete a set of tables in this template on how it expects to meet its 2020 target, including the technology mix and the trajectory to reach it. The current report makes use of the fact that these tables have been defined in a consistent way. All data have been collected from the NREAP documents and they are available as a data report (this report), a database containing all data from the NREAPs (in plain-text and in spreadsheet format) and a set of figures from the datareport (in PDF and PNG). The purpose has been to allow easy comparison for further analysis by the audience³.

The focus of this work is on the numbers and figures of the renewable energy projections. All other subjects addressed in the documents, such as renewable energy policies, costs and benefits and grid integration issues have not been considered in the current analysis. Moreover, it was not the objective of this analysis to check whether the proposed policies indeed result in the projections made.

Whereas the data report focuses on the projections for the individual Member States, this summary section focuses on the aggregate results for all European Member States: Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Spain, Sweden and the United Kingdom. For 20 countries supplementary information provided by the Member States has been integrated. These Member States are: Austria, Belgium, Bulgaria, Cyprus, Denmark, Finland, France, Greece, Hungary, Ireland, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Portugal, Romania, Spain, Sweden and the United Kingdom. For the following Member States no additional information is available: the Czech Republic, Estonia, Germany, Italy, Poland, Slovakia and Slovenia, meaning that for these countries data from the original NREAP have been used.

In the following, figures from all Member States have been combined to yield estimates for 'total values' for all 27 Member States of the European Union (EU-27). Two methods have been applied to do this:

- a. Using the aggregate tables from the individual NREAPs (Tables 3 and 4, resulting in a total RES share of 20.7% in 2020;
- b. Using the technology-specific tables from the NREAPs (Tables 5 to 12, page 21 onwards, resulting in a total RES share of 20.8%.

For calculating the overal RES share the thus derived total RES estimates have compared to the gross final energy use as projected in the 'additional energy efficiency scenario' (Table 2).

The charts and tables in this report present primary data (numbers directly taken from the NREAP documents) and secondary data (data derived from the primary data). For the secondary data, four parameters have been presented consistently throughout the report: an indicator on full load hours

¹At http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT the Renewable Energy Directive is available for download in all European languages.

² The Template is available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548: EN:NOT.

³At http://www.ecn.nl/nreap the report, the database and the image files are available for download.

(applies to electricity options only), an indicator on growth rates calculated from the projected energy production (for electricity options also for changes in capacity), and indicators on per capita and per surface area achievement. Although for the two latter indicators a bias exists between countries depending on their population density, these indicators enable comparison of large and small countries in a more meaningful manner (see Section 1.4.2). The indicators depicted in the report show the merits of presenting the data using these indicators: large countries with high projections for certain renewables countries are averaged out when presented on a per capita or a per surface area basis. The indicator on full load hours shows expected deviations between Southern European countries and Northern European countries for solar electricity technologies.

Gross final energy consumption

The NREAPs all provide projections for gross final energy consumption in the period 2010 – 2020. Most Member States have specified two scenarios: a 'reference' and an 'additional energy efficiency scenario'. Gross final energy consumption has been reported for electricity, heating and cooling and transport separately.

The gross final energy consumption according to these two scenarios for some Member States has been reduced in order to compensate for a relatively large share of aviation in their gross final consumption of energy (see Article 5.6 in the Renewable Energy Directive (2009/28/EC) and the introduction section on page 62). This results in a value 'before aviation reduction' and in a value 'after aviation reduction'. Table 1 presents for the reference scenario the resulting energy consumption data for all 27 Member States of the European Union (EU-27), the relative shares and the average annual growth rates. Table 2 presents the same for the additional energy efficiency scenario.

For the purpose of calculating the overall renewable share the relevant parameter is the gross final energy consumption after aviation reduction (in Table 2 the last row, indicating '*Total after aviation*'). In the year 2020 this value amounts to 1180 Mtoe.

All renewable energy sources (RES)

Table 3 indicates that the total gross production from renewable energy sources (RES) amounts to 244.6 Mtoe in the year 2020. The largest contributions of renewable energy originate from heating and cooling (RES-H/C, 46% in 2020) and from renewable electricity (RES-E, 42% in 2020).

Table 1: Total gross final energy consumption in the reference scenario for all demand sectors for the aggregate of all 27 European Union Member States. See Tables 47, 49, 51, 53 and 55 for details.

	Energy				Share	Average annual growth		
	2005 [Mtoe]	2010 [Mtoe]	2015 [Mtoe]	2020 [Mtoe]	$[\%]^a$	'05 – '10 [%/year]	'10 – '15 [%/year]	'15 – '20 [%/year]
Electricity	268	286	307	329	25	1.3	1.4	1.4
Heating and cooling	552	556	569	581	44	0.1	0.5	0.4
Transport	299	322	337	349	27	1.5	0.9	0.7
Total before aviation Total after aviation	1166 1162	1213 1208	1266 1259	1317 1307	100 99	0.8 0.8	0.9 0.8	0.8 0.8

^a The percentage refers to the share of the demand sectors (electricity, heating and cooling and transport) in total gross final energy consumption before aviation reduction in the year 2020.

Renewable transport (RES-T) contributes 13% to the overall renewable energy in 2020. On average this projection results in an annual growth for overall renewables of approximately 6% annually for the period 2010 - 2020. The presented data have been taken from the aggregate table in the individual NREAPs⁴.

The share of renewable energy in gross final energy consumption

Based on the above-mentioned parameters, Table 4 integrates the EU-27 contribution from renewable energy sources (the denominator in the quotient for calculating the share of renewables, available from Table 3) and the gross final energy consumption (the numerator, available from Tables 1 and 2). From this table it can be seen that in the year 2020 the overall share of renewables in the 'additional energy efficiency scenario' after applying the aviation reduction slightly overshoots the EU-27 target of 20% renewable energy in the year 2020, arriving at 20.7%. In the reference scenario the EU-27 target is not being met (less than 19% in 2020); this is a logical result of the fact that all projections have been designed to meet the target for the additional energy efficiency scenario. The 'aviation reduction' applied to the gross final energy consumption results in an increase of the overall renewable share of 0.1%-point (from 20.6% to 20.7%).

Table 4 also presents the share of renewables in transport according to the Directive definition (see table footnote b). For the year 2020 the target largely surpasses the target of 10%: a share of 11.3% is being reached.

Looking at the overall growth rates per renewable energy type, it can be observed that for the period 2010 – 2020 the growth rates are smallest for renewable heating and cooling (between 4.5% and 5.7% annually, depending on the period), and that renewable transport is growing fastest (7.2% to 8.5% annually, with a very high growth rate for the period 2005 - 2010 (31.2% per year, caused by the relatively low energy contribution of 3.9 Mtoe for 2005). Renewable electricity has a growth rate of 6.2% to 6.8% annually. It should be noted however that these growth rates are *average* values, and that the conventional renewable technologies (hydropower electricity, solid biomass heating) constitute a large part of the renewable energy stock. From the summary section on detailed RES-specific projections (starting on page 21) it can be observed that average growth rates for new renewables (wind power, solar electricity and solar thermal energy, heat pumps and biofuels for example) are significantly higher (Tables 6, 8 and 10).

Table 2: Total gross final energy consumption in the additional energy efficiency scenario for all demand sectors for the aggregate of all 27 European Union Member States. See Tables 48, 50, 52, 54 and 56 for details.

		Energy			Share	Average annual growth		
	2005	2010	2015	2020		'05 – '10	'10 – '15	'15 – '20
	[Mtoe]	[Mtoe]	[Mtoe]	[Mtoe]	$[\%]^a$	[%/year]	[%/year]	[%/year]
Electricity	268	283	293	304	26	1.1	0.7	0.7
Heating and cooling	552	543	532	521	44	-0.3	-0.4	-0.4
Transport	299	313	315	312	26	0.9	0.1	-0.2
Total before aviation Total after aviation	1166 1162	1189 1184	1192 1185	1189 1180	100 99	0.4 0.4	0.0 0.0	0.0 -0.1

^a The percentage refers to the share of the demand sectors (electricity, heating and cooling and transport) in total gross final energy consumption before aviation reduction in the year 2020.

 $^{^4}$ The aggregate table mentioned here refers to the NREAP Template Table 4a, see footnote 2 .

Table 3: Total contribution from renewable energy sources (RES) for all 27 European Union Member States (EU-27). This table has been compiled based on the aggregate RES values as specified in the NREAPs. See report Tables 57 to 60 (pages 76 to 79) for country-specific details.

	Energy				Share	Average annual growth			
	2005 [Mtoe]	2010 [Mtoe]	2015 [Mtoe]	2020 [Mtoe]	2020 [%] a	2005 – 2010 [%/year]	2010 – 2015 [%/year]	2015 – 2020 [%/year]	
RES-E	41.1	55.0	76.3	103.1	42	6.0	6.8	6.2	
RES-H/C	54.7	67.9	84.8	111.6	46	4.4	4.5	5.7	
RES-T	3.9	15.1	21.4	32.1	13	31.2	7.2	8.5	
RES-T* b	4.1	15.8	22.8	35.3	-	30.8	7.6	9.1	
Total RES ^c	98.7	137.0	181.0	244.6	100	6.8	5.7	6.2	

^a The percentage refers to the share of the renewable energy types (electricity, heating and cooling and transport) in total renewable energy in the year 2020.

Table 4: Overall renewable energy share in the aggregate of all 27 European Union Member States. Data calculated from Table 11 on renewable energy and Tables 1 and 2 on gross final energy consumption according to the two scenarios. The 'additional efficiency scenario' after aviation reduction is leading for calculating the renewable energy share.

]	Reference scenario				Additional efficiency scenario			
	2005 [%]	2010 [%]	2015 [%]	2020 [%]	2005 [%]	2010 [%]	2015 [%]	2020 [%]	
Electricity	15.3	19.3	24.9	31.3	15.3	19.4	26.1	34.0	
Heating and cooling	9.9	12.2	14.9	19.2	9.9	12.5	15.9	21.4	
Transport ^a	1.3	4.7	6.3	9.2	1.3	4.8	6.8	10.3	
Transport target ^b	1.4	4.9	6.8	10.1	1.4	5.0	7.2	11.3	
Total before aviation reduction	8.5	11.3	14.3	18.6	8.5	11.5	15.2	20.6	
Total after aviation reduction	8.5	11.3	14.4	18.7	8.5	11.6	15.3	20.7	

^a The share for transport simply expresses the share of RES-T (excluding double counting of renewable electricity, hydrogen and biogas in transport, as specified in Article 5.8 in the Directive) in gross final energy consumption and is not to be interpreted as the renewable share in transport.

^b In 'RES-T*' the amount of renewable energy in transport is reported according to the Renewable Energy Directive (2009/28/EC). Renewable electricity in electric road vehicles is to be accounted for 2.5 times the energy content of the input of electricity from renewable energy sources (Article 3.4c). Moreover, the contribution of biofuels produced from wastes, residues, non-food cellulosic material, and ligno-cellulosic material is to be considered twice that of other biofuels (Article 21.2).

^c Note that the column 'Total RES' is not corresponding to the sum of the individual RES subcategories. Reason for this is the required correction for 'renewable electricity in transport'. This correction has not by all Member States been consistently performed. See Tables 48, 50, 52, 54 and 56 for details (column 'All RES' versus column 'RES-E,H/C,T'). All 27 European Union Member States (EU-27) have been considered in this table. This regards the following countries: Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Spain, Sweden and the United Kingdom.

^b In 'Transport target' the share of renewable energy in transport is reported according to the Renewable Energy Directive (2009/28/EC). See footnote *b* in Table 3.

Detailed information from RES-specific projections

This section takes the technology-specific tables from the NREAPs as a starting point, which yields slightly different values compared to the findings from Table 4. The reason for this can be found in internal inconsistencies in the NREAP documents (in some cases total values do not match the categories they sum, see also footnote e in Table 9 and footnote c in Table 3).

Renewable electricity (RES-E)

Table 5 shows the breakdown of the renewable electricity technologies into subcategories (where applicable) and Table 6 shows calculated growth rates. For new renewables such as wind power, solar PV and tidal, wave and ocean energy double-digit growth rates result. For individual countries data can be found in the tables in the technology-specific chapters of the report (relevant page numbers have been indicated in the last columns).

Taking a closer look at the mix of renewable electricity technologies for the year 2020 (Table 5), it can be observed that the most important contribution is expected from wind power (40.7% of which onshore wind power contributes 28.9%-point). The second largest technology is expected to be hydropower (30.4% of all RES-E in 2020, of which large hydropower takes 25.4%-point). Biomass electricity is responsible for 19.1% and solar electricity for 8.5% (6.9%-point from photovoltaics).

Renewable heating and cooling (RES-H/C)

Table 7 shows the contribution of the renewable heating and cooling technologies in detail and Table 8 shows calculated growth rates. For renewable heating and cooling the largest share in the year 2020 is from biomass (81.1%), notably solid biomass (72.6%). Second is renewable energy from heat pumps (10.9%), followed by solar thermal (5.7%) and deep geothermal heat (2.4%). In the original NREAP for Romania the technology breakdown of renewable heating and cooling was not available, reason for which this table deviates significantly from the one in the February 1^{st} , 2011 version of the current report. In 2011 Romania has provided the information in a seperate update which has been integrated in this version of the report. Looking at Table 8 it can be seen that growth rates generally are higher for the non-biomass options (except biogas).

Renewable energy in transport (RES-T)

Table 9 shows the contribution of the renewable transport energy carriers and Table 10 shows calculated growth rates. According to this table, biodiesel has the largest contribution in 2020 (65.9%), followed by bio-ethanol / bio-ETBE (22.2%). In the original NREAP for Romania the technology breakdown of renewable transport was not available, reason for which this table deviates significantly from the one in the February 1st, 2011 version of the current report. In 2011 Romania has provided the requested information in a seperate update which has been integrated in this version of the report (see also Section 1.8.23 for other issues on the Romanian 2011 update). The tables in the report (see the page numbers in the last column of Table 9) provide more information about the shares of Article 21.2 biofuels and imported biofuels. Renewable electricity also has a significant contribution, but this does not count towards the overall renewable energy production as specified in Article 5.1 of the Directive. Romania is the first European Member States projecting a small contribution from renewable hydrogen in transport (see footnote c in Table 9).

Table 5: Total renewable electricity (RES-E) capacity and energy for all 27 European Union Member States

		2005	2010	2015	2020	$[\%]^{a}$	$[\%]^{b}$	Page
Hydropower < 1MW	[GW]	2.7	2.9	3.1	3.4			100
	[TWh]	11.3	11.0	11.7	12.6			103
	[Mtoe]	1.0	0.9	1.0	1.1	1.0	0.4	-
Hydropower 1MW – 10 MW	[GW]	9.4	9.9	11.2	12.5			100
	[TWh]	34.0	34.1	36.6	40.3			103
10.00	[Mtoe]	2.9	2.9	3.1	3.5	3.3	1.4	-
Hydropower >10MW	[GW]	101.4	99.1	104.6	112.4			100
	[TWh]	294.8	291.8	299.3	309.5	25.4	10.0	103
D 1 (1 1	[Mtoe]	25.3	25.1	25.7	26.6	25.4	10.8	100
Pumped storage hydropower	[GW]	23.4	28.1	32.0	39.5			100
	[TWh]	23.9	23.6	27.7	32.6			103
II. da a a como (coletatal con lo dia a como el atroca el	[Mtoe]	2.1	2.0	2.4	2.8	n.a.	n.a.	100
Hydropower (subtotal excluding pumped storage)	[GW]	119.4	122.4	130.0	139.7			100
	[TWh]	340.9	342.7	354.0	369.3	20.4	12.0	103
	[Mtoe]	29.3	29.5	30.4	31.8	30.4	12.9	-
Geothermal	[GW]	0.7	0.8	1.0	1.6			108
	[TWh]	5.5	6.0	7.3	10.9			110
	[Mtoe]	0.5	0.5	0.6	0.9	0.9	0.4	-
Solar photovoltaic	[GW]	2.2	25.5	54.4	84.4			118
F	[TWh]	1.5	20.1	51.8	83.4			121
	[Mtoe]	0.1	1.7	4.5	7.2	6.9	2.9	-
Concentrated solar power	[GW]	0.0	0.6	3.6	7.0	0.7	2.7	118
concentrated some power	[TWh]	0.0	1.2	9.0	20.0			121
	[Mtoe]	0.0	0.1	0.8	1.7	1.6	0.7	-
Solar (subtotal)	[GW]	2.2	26.1	58.0	91.4	1.0	0.7	118
bola (suctous)	[TWh]	1.5	21.3	60.8	103.3			121
	[Mtoe]	0.1	1.8	5.2	8.9	8.5	3.6	-
Tidal ways and assen aneway	[GW]	0.2	0.2	0.4	2.3			126
Tidal, wave and ocean energy	[TWh]	0.2	0.2	0.4	6.5			128
	[Mtoe]	0.0	0.0	0.9	0.5	0.5	0.2	120
	[Mioe]	0.0	0.0	0.1	0.0	0.5	0.2	
Onshore wind	[GW]	39.8	82.2	126.7	168.8			136
	[TWh]	66.9	155.5	257.7	351.8			139
	[Mtoe]	5.7	13.4	22.2	30.2	28.9	12.3	-
Offshore wind	[GW]	0.7	2.6	15.6	44.2			136
	[TWh]	1.9	8.7	49.9	142.5			139
	[Mtoe]	0.2	0.7	4.3	12.2	11.7	5.0	-
Wind power (subtotal)	[GW]	40.4	84.9	143.2	213.6			136
	[TWh]	70.4	164.6	309.2	494.8			139
	[Mtoe]	6.1	14.1	26.6	42.5	40.7	17.3	-
Solid biomass	[GW]	10.6	14.4	20.8	27.7			146
	[TWh]	55.1	76.8	113.8	154.9			149
	[Mtoe]	4.7	6.6	9.8	13.3	12.7	5.4	_
Biogas	[GW]	2.7	5.4	7.9	11.2			146
	[TWh]	12.5	28.7	43.9	64.0			149
	[Mtoe]	1.1	2.5	3.8	5.5	5.3	2.2	_
Bioliquids	[GW]	0.4	1.0	1.4	1.7			146
•	[TWh]	1.5	8.6	10.9	12.7			149
	[Mtoe]	0.1	0.7	0.9	1.1	1.0	0.4	-
Biomass (subtotal)	[GW]	15.7	22.6	32.4	43.6			146
· · · · · · · · · · · · · · · · · · ·	[TWh]	60.2	103.7	169.0	232.0			149
	[Mtoe]	5.2	8.9	14.5	19.9	19.1	8.1	-
Tatal and annual lands at the								
Total renewable electricity	[TWh]	479.0	638.7	901.2	1216.8	100.0	40.5	-
	[Mtoe]	41.2	54.9	77.5	104.6	100.0	42.5	-

^{&#}x27;Pumped storage hydropower' has not been considered in the values for totals and subtotals

^a The percentage refers to the share of the individual technologies in total renewable electricity in the year 2020 ^b The percentage refers to the share of the individual technologies in total renewable energy (electricity, heating and cooling and transport) in the year 2020

Table 6: Average annual growth of renewable electricity (RES-E) capacity and energy for all 27 European Union Member States

		2005 – 2010 [%/year]	2010 – 2015 [%/year]	2015 – 2020 [%/year]	Page
Hydropower < 1MW	Capacity	1.0	1.8	1.7	-
	Energy	-0.6	1.2	1.5	-
Hydropower 1MW – 10 MW	Capacity	1.1	2.5	2.1	-
	Energy	0.1	1.4	1.9	-
Hydropower >10MW	Capacity	-0.4	1.1	1.4	_
7 - 1	Energy	-0.2	0.5	0.7	-
Pumped storage hydropower	Capacity	3.8	2.6	4.3	_
	Energy	-0.2	3.3	3.3	-
Hydropower (subtotal excluding pumped storage)	Capacity	0.5	1.2	1.5	99
	Energy	0.1	0.7	0.9	102
Geothermal	Capacity	1.9	5.0	9.1	109
	Energy	1.8	4.2	8.2	111
Solar photovoltaic	Capacity	62.9	16.4	9.2	-
•	Energy	68.8	20.8	10.0	-
Concentrated solar power	Capacity	n.a.	41.2	14.5	-
•	Energy	n.a.	51.0	17.2	-
Solar (subtotal)	Capacity	63.7	17.3	9.5	117
	Energy	70.7	23.4	11.2	120
Tidal, wave and ocean energy	Capacity	0.4	8.7	43.4	127
-	Energy	-1.3	11.5	49.7	129
Onshore wind	Capacity	15.6	9.1	5.9	-
	Energy	18.4	10.6	6.4	-
Offshore wind	Capacity	30.5	43.2	23.2	-
	Energy	35.2	41.9	23.4	-
Wind power (subtotal)	Capacity	16.0	11.0	8.3	135
	Energy	18.5	13.4	9.9	138
Solid biomass	Capacity	6.3	7.7	5.9	-
	Energy	6.9	8.2	6.4	-
Biogas	Capacity	15.2	7.8	7.3	-
	Energy	18.1	8.9	7.8	-
Bioliquids	Capacity	23.1	6.7	3.5	-
	Energy	42.5	4.9	3.1	-
Biomass (subtotal)	Capacity	7.5	7.4	6.1	145
	Energy	11.5	10.3	6.5	148
Average renewable electricity	Energy	5.9	7.1	6.2	

The growth rates for subcategories of technologies in this table have been calculated from the projections in Table 5

Table 7: Total renewable heating and cooling (RES-H/C) energy for all 27 European Union Member States

	2005 [Mtoe]	2010 [Mtoe]	2015 [Mtoe]	2020 [Mtoe]	Share [%] ^a	Share [%] ^b	Page
Geothermal	0.4	0.7	1.3	2.6	2.4	1.1	154
Solar thermal	0.7	1.4	3.0	6.3	5.7	2.6	160
Solid biomass	47.7	56.6	66.2	81.0	72.6	32.9	168
Biogas ^c	0.6	1.5	2.9	5.1	4.5	2.1	168
Bioliquids	1.1	3.6	4.1	4.4	4.0	1.8	168
Biomass (subtotal)	52.6	61.7	73.1	90.4	81.1	36.8	168
Aerothermal heat pumps	0.1	2.3	3.7	6.3	5.6	2.6	174
Geothermal heat pumps	0.2	1.2	2.4	4.2	3.8	1.7	174
Hydrothermal heat pumps	0.0	0.2	0.4	0.6	0.5	0.2	174
Renewable energy from heat pumps (subtotal)	0.6	4.0	7.2	12.2	10.9	4.9	174
Total renewable heating and cooling ^d	54.3	67.8	84.7	111.5	100.0	45.4	-

^a The percentage refers to the share of the individual technologies in total renewable heating and cooling in the year 2020.

Table 8: Average annual growth for renewable heating and cooling (RES-H/C) energy for all 27 European Union Member States

	2005 – 2010 [%/year]	2010 – 2015 [%/year]	2015 – 2020 [%/year]	Page
Geothermal	9.8	14.4	14.3	155
Solar thermal	16.0	15.8	16.0	161
Solid biomass	3.5	3.2	4.1	-
Biogas a	18.8	13.9	11.8	-
Bioliquids	26.3	2.4	1.5	-
Biomass (subtotal)	3.2	3.5	4.3	167
Aerothermal heat pumps	74.6	10.4	10.9	-
Geothermal heat pumps	37.1	15.2	12.3	-
Hydrothermal heat pumps	50.6	9.5	9.7	-
Renewable energy from heat pumps (subtotal)	45.5	12.5	10.9	173
Average renewable heating and cooling	4.5	4.6	5.7	-

^a In 'biogas' the value for 'Bio-SNG for grid feed-in' as specified in the Dutch NREAP has been included The growth rates for subcategories of technologies in this table have been calculated from the projections in Table 7

^b The percentage refers to the share of the individual technologies in total renewable energy (electricity, heating and cooling and transport) in the year 2020.

^c In 'biogas' the value for 'Bio-SNG for grid feed-in' as specified in the Dutch NREAP has been included.

Table 9: Total renewable transport (RES-T) energy for all 27 European Union Member States

	2005 [Mtoe]	2010 [Mtoe]	2015 [Mtoe]	2020 [Mtoe]	Share [%] ^a	Share [%] ^b	Page
Bioethanol / bio-ETBE	0.5	2.9	5.0	7.3	22.2	3.0	180
Biodiesel	2.4	11.0	14.5	21.6	65.9	8.8	186
Hydrogen from renewables ^c	0.0	0.0	0.0	0.0	0.0	-	190
Renewable electricity	1.1	1.3	2.0	3.1	9.5	-	198
Other biofuels	0.2	0.2	0.3	0.8	2.4	0.3	204
Total renewable transport d	4.2	15.3	21.7	32.9	100.0	-	-
Total renewable transport Article 5.1 ^e	3.1	14.0	19.8	29.7	90.5	12.1	-

^a The percentage refers to the share of the individual technologies in total renewable transport in the year 2020.

Table 10: Average annual growth for renewable transport (RES-T) for all 27 European Union Member States

	2005 – 2010 [%/year]	2010 – 2015 [%/year]	2015 – 2020 [%/year]	Page
Bioethanol / bio-ETBE	40.3	11.6	8.0	179
Biodiesel	35.7	5.8	8.3	185
Hydrogen from renewables ^c	n.a.	n.a.	n.a.	191
Renewable electricity	3.7	8.6	9.6	197
Other biofuels	1.2	4.9	24.1	203
Average renewable transport	29.6	7.2	8.6	-

^b The percentage refers to the share of the individual technologies in total renewable energy (electricity, heating and cooling and transport) in the year 2020. This value is not available for electricity and hydrogen from renewable energy, see footnote d.

^c Romania reported in the updated Template Table 12 (2011) a contribution of 2.4 ktoe 'Renewable hydrogen' (0.0024 Mtoe) and is the only Member State that provided a non-negative estimate for this energy carrier.

^d The value 'Total renewable transport' has not been corrected as indicated in Article 5.1 of Directive 2009/28/EC.

^e The 'Total renewable transport Article 5.1' has been calculated by substracting electricity and hydrogen from renewable energy values from 'Total renewable transport'. This is to avoid double counting as indicated in Article 5.1 of Directive 2009/28/EC. The category 'other biofuels' has not been applied for the correction. The resulting values are used for determining the overall renewable energy production in Table 11.

Table 11: Total contribution from renewable energy sources (RES) for all 27 European Union Member States. See Tables 7 to 10 for underlying data. The values have been calculated from the detailed, technology-specific NREAP projections and differ slightly from the values presented in Table 3, which has been compiled based on aggregate RES values as available from the NREAPs as well.

	Energy				Energy Share				Share	Average annual growth			
	2005 [Mtoe]	2010 [Mtoe]	2015 [Mtoe]	2020 [Mtoe]	$[\%]^a$	2005 – 2010 [%/year]	2010 – 2015 [%/year]	2015 – 2020 [%/year]					
RES-E	41.2	54.9	77.5	104.6	43	5.9	7.1	6.2					
RES-H/C	54.3	67.8	84.7	111.5	45	4.5	4.6	5.7					
RES-T b	3.1	14.0	19.8	29.7	12	35.2	7.1	8.5					
Total RES	98.6	136.8	182.0	245.9	100	6.8	5.9	6.2					

^a The percentage refers to the share of the renewable energy types (electricity, heating and cooling and transport) in total renewable energy in the year 2020

All 27 European Union Member States (EU-27) have been considered in this table. This regards the following countries: Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Spain, Sweden and the United Kingdom.

Renewable energy share according to detailed projections

Table 11 indicates that the total gross production from renewable energy sources (RES) (excluding pumped storage hydropower and for renewable transport corrected for double counting according to Article 5.1 of the Directive) amounts to 245.8 Mtoe in the year 2020⁵. Note that this value, calculated from the detailed renewable energy projections for RES-E, RES-H/C and RES-T, differs from the value reported in Table 3 (244.5 Mtoe). As the deviations are relatively small, it can be observed that the different contributions from renewable energy largely are in line with the data presented in Table 3. Renewable heating and cooling contributes 45% in 2020 instead of 46% and renewable electricity 43% in 2020 instead of 42%. Renewable transport (RES-T) remains unchanged with a 12% contribution to the overall renewable target, as does the value for the average annual growth.

Using these slightly different RES projections as input to calculate the shares in gross final energy consumption, the resulting shares also will be different. This has been displayed in Table 12. For the year 2020 the 'additional efficiency scenario after aviation reduction' results in a share of 20.8%, slightly higher than the 20.7% reported in Table 4. The reason for this is that some NREAP documents have internal inconsistencies, i.e. aggregate values do not match between tables. This can be observed also from the country tables in this report (pages 209 to 261). This has been improved with the 2011 update provided by the Member States, but some issues still remain. Based on the detailed projections no share of renewable transport has been calculated.

Differences between the two approaches

Comparing Table 4 to Table 12 it becomes clear that differences exist between the two approaches introduced on page 17. The reason for this can be found in internal inconsistencies in the NREAP documents, which highlights the need for a thorough check of all projections from the Member States, and a recalculation of the NREAP for some of the Member States.

^b Total renewable energy for transport has been corrected for electricity and hydrogen from renewable energy sources as indicated in Article 5.1 of Directive 2009/28/EC. See Table 9.

⁵The NREAP for Romania doesn't pronounce on detailed projections for renewable heating and cooling and renewable transport (Template Tables 11 and 12 are missing), these projections have been taken from the data overview presented in Tables 57 to 60 for the purpose of this overview table.

Table 12: Overall renewable energy share in the aggregate of all 27 European Union Member States. Data calculated from Table 3 on renewable energy (based on detailed projections) and Tables 1 and 2 on gross final energy consumption according to the two scenarios. The 'additional efficiency scenario' after aviation reduction is leading for calculating the renewable energy share. Note that the value 20.8% differs slightly from the value 20.7% from Table 4. This is caused by internal inconsistencies in the NREAPs.

	Reference scenario				Additional efficiency scenario			
	2005 [%]	2010 [%]	2015 [%]	2020 [%]	2005 [%]	2010 [%]	2015 [%]	2020 [%]
Electricity	15.3	19.2	25.3	31.8	15.3	19.4	26.5	34.5
Heating and cooling	9.8	12.2	14.9	19.2	9.8	12.5	15.9	21.4
Transport ^a	1.0	4.4	5.9	8.5	1.0	4.5	6.3	9.5
Total before aviation reduction Total after aviation reduction	8.5	11.3	14.4	18.7	8.5	11.5	15.3	20.7
	8.5	11.3	14.5	18.8	8.5	11.5	15.4	20.8

^a The share for transport simply expresses the share of RES-T (excluding double counting of renewable electricity, hydrogen and biogas in transport, as specified in Article 5.8 in the Directive) in gross final energy consumption and is not to be interpreted as the renewable share in transport. Based on the detailed projections no share of renewable transport has been calculated.

1 Introduction

The Renewable Energy Directive (2009/28/EC) discusses various subjects related to the development of renewable energies in the European Member States, among others the legally binding share of renewable energy in gross final energy consumption. In Article 4 of the Directive each Member State is requested to provide a National Renewable Energy Action Plan (NREAP) by 30 June 2010. In order to draft this plan, a template was published by the Commission. Each Member State is obliged to complete a set of tables in this template on how it expects to meet its 2020 target, including the technology mix and the trajectory to reach it.

This report makes use of the fact that these tables have been defined in a consistent way. All data have been collected from the NREAP documents and three products are available from this:

- A data report: the current document integrates and aggregates where possible data from the individual countries, presents tables in various cross-sections and presents the data graphically. In addition, a summary report is available;
- A set of figures: all figures from the data-report are available as separate graphic files;
- A database: all data have been entered in a database for further analysis by the audience.
 The database is available in two layouts: comma-separated values in a plain-text file and a spreadsheet in Open Document Format

These products are freely available for download from http://www.ecn.nl/nreap.

This first chapter explains the characteristics of this work, the target audience, limitations, countries considered. Data types are discussed, technical notes on the process of data transfer to the database are presented and the chapter ends with a listing of changes compared to the previous version of database and report. The further chapters in the report contain the actual figures and tables. Where necessary, figure and table captions and footnotes mention important information.

1.1 Target audience

This report is difficult to digest without context. It is therefore not the intention of the authors to provide a document for the general public, but rather to facilitate specialists to evaluate the NREAPs in an aggregate way. This target audience consists of researchers, national and European policy makers, journalists of on-topic magazines or other groups. The current report provides a general overview, where some details have been omitted in order to assist the reader. The abovementioned database is available in various formats.

1.2 Limitations of this work

Most NREAP documents have been provided in the national language. For collecting the data from these documents, the focus has been on the *tables* in the documents, notably Template⁶ Tables 1, 2, 3, 4a, 4b, 6, 7, 7a, 8, 9, 10a, 10b, 11 and 12. The originally submitted documents can contain important additional information in the text belonging to the data tables, but the NREAP text has not been processed for this work.

Focus in the current report on evaluating the NREAP documents has been on the numbers and figures. All other subjects addressed in the documents, such as renewable energy policies, costs and benefits and grid integration issues have not been considered in the current analysis. Also, it was not the objective of this analysis to check whether the proposed policies indeed result in the projections made.

⁶The Template is available in all European languages from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do? uri=CELEX:32009D0548:EN:NOT

Introduction 28 NOV 2011

1.3 Countries considered in this version of the report

The deadline for submitting the NREAP documents was 30 June 2010. In practice, the first NREAPs were available for download from the European transparency platform starting from 2 July 2010. On 31 July 2010 a total number of 14 documents had been officially released. At the time of releasing the first version of this report (10 September 2010) a total of 19 Member State NREAP documents were available from the Transparency Platform. Two intermediate updates have been released, and the version of February 1st, 2011 was the first to contacin *all* Member States. This version of the data report and database (28 November 2011) covers all 27 countries, including the supplementary information provided by the Member States. See Table 13 for the release dates of the NREAPs and Table 15 for information regarding the updates.

1.4 Primary and secondary data

The figures and tables in the current report present two data categories:

- Primary data: numbers directly taken from the NREAP documents, at times in a different cross-section or in a different unit;
- Secondary data: data derived from the primary data, at times using other parameters.

Table 13: Overview of release dates of the National Renewable Energy Action Plans (NREAPs). The months refer to the year 2010, except for the Hungarian NREAP (released January 2011).

Country	Code	Jul	Aug	Sep	Oct	Nov	Dec	January 2011
Belgium	BE						Х	
Bulgaria	BG	Х						
Czech Republic	CZ			Х				
Denmark	DK	Х						
Germany	DE		Х					
Estonia	EE						Х	
Ireland	ΙE	Х						
Greece	EL	Х						
Spain	ES	Х						
France	FR		Х					
Italy	IT		Х					
Cyprus	CY	Х						
Latvia	LV				Х			
Lithuania	LT	Х						
Luxembourg	LU		Х					
Hungary	HU							Х
Malta	MT	Х						
Netherlands	NL	Х						
Austria	AT	Х						
Poland	PL						Х	
Portugal	PT		X					
Romania	RO			Х				
Slovenia	SI	Х						
Slovakia	SK				Х			
Finland	FI	Х						
Sweden	SE	Х						
United Kingdom	UK	Х						
Number of countries		14	5	2	2	0	3	1

The country codes have been chosen in line with recommendations from the *Interinstitutional Style Guide*, http://publications.europa.eu/code/en/en-370100.htm, sourced June 2010.

28 NOV 2011 Introduction

The report presents figures of both primary and secondary data. For secondary data, mainly grey tones are used for the bars, in order to clearly distinguish from the primary data figures, for which more colors have been used. Primary and secondary data are discussed in more detail in the following sections.

1.4.1 Primary data

The primary data directly use the numbers from the action plans. They are presented in graphical and tabular form, mostly in a five-year interval. If applicable, all data are aggregated and listed as *total* or *average* numbers. The database available from www.ecn.nl/nreap only contains primary data.

1.4.2 Secondary data

Taking the primary data as input, various derived parameters can be obtained. These secondary data assist the reader in further evaluating the primary data and/or to compare individual countries and/or to rank them. Note that the merit of these derived indicators is not so much to underpin the NREAP projections: they rather serve to correct for differences in country size and to find outliers. Four examples of derived secondary indicators are discussed below.

The *indicator on full load hours* applies to electricity options only. Based on primary electricity capacity [MW] and electricity production [GWh] as available through tables 10a and 10b of the NREAPs it shows the average amount of full load hours for all renewable electricity technologies. The indicator is meant to provide a common base for comparing the way in which technology parameter assumptions have been used in the various NREAP documents. The value does not necessarily represent a reference to technology characteristics in the real world.

The *indicator on growth rates* provides information on past and future average annual growth rates, based on the renewable energy projections. In the current version of the report, these rates have been calculated for a five-year and a ten-year period, both for the past (2005 - 2010) and prospective required growth rates (starting from the year 2010). For the reader it is interesting to see the resulting growth rates based on the projections, because these indicate the level of suitability of each renewable technology to individual Member States.

The *indicator on per capita achievement* relates the projected energy yield for each renewable technology to the number of inhabitants of a country. See table 14 for the assumptions. Note that instead of using a projection of the population data for the period under consideration, a fixed value has been chosen as a reference (namely the 2008 status). For the electricity options the per capita indicator has only been calculated for *production*, not for *capacity*. This yields a more common base of comparison, without the country-specific number of full load hours blurring the indicator value.

The *indicator on per surface area achievement* relates the projected energy yield for each renewable technology to the surface area of a country. See table 14 for underlying data.

Note that for the latter two indicators a bias exists among countries depending on their population density. As can be seen in Figure 1 most countries are characterised reasonably well by the line indicating the average European population density. A minority of countries vary significantly from this average value: countries with a higher population density are Malta, Belgium, the Netherlands, Italy, the United Kingdom and Germany. Countries with a relatively low population density are Estonia, Latvia, Lithuania, Finland and Sweden.

Introduction 28 NOV 2011

Figure 1: Bias in countries based on population and surface area from Table 14. More densely populated countries can be found to the right of the line indicating the average population density

Table 14: Country data used for calculating indicators

Country	Country code	Population 2008	Surface area
		[-]	$[km^2]$
Belgium	BE	10666866	30528
Bulgaria	BG	7640238	111002
Czech Republic	CZ	10381130	78867
Denmark	DK	5475791	43098
Germany	DE	82217837	357030
Estonia	EE	1340935	43698
Ireland	IE	4401335	69797
Greece	EL	11213785	131957
Spain	ES	45283259	505997
France	FR	63982881	632834
Italy	IT	59619290	301336
Cyprus	CY	789269	9250
Latvia	LV	2270894	64589
Lithuania	LT	3366357	65300
Luxembourg	LU	483799	2586
Hungary	HU	10045401	93030
Malta	MT	410290	316
Netherlands	NL	16405399	41528
Austria	AT	8318592	83871
Poland	PL	38115641	312685
Portugal	PT	10617575	92002
Romania	RO	21528627	238391
Slovenia	SI	2010269	20273
Slovakia	SK	5400998	49034
Finland	FI	5300484	338145
Sweden	SE	9182927	441370
United Kingdom	UK	61179256	243069
European Union (27 countries, total)	EU-27	497649125	4401582

Source: Eurostat, July 2010 (Population on 1 January 2008 and Area of the regions (2004) respectively)

28 NOV 2011 Introduction

1.5 Technical notes on the database transfer

All available data from the abovementioned set of tables from the Template have been entered into the database. In most cases this process was straightforward, but for a few data-entries difficulties emerged. In this section these difficulties are highlighted on a per-country basis, but not further elaborated. Examples of problems that occurred:

- Changed data labels (i.e. a row has been added to the Template);
- Data split into more categories than the Template prescribes;
- Alternative units used (this has been adopted as much as possible in the database);

Another important limitation faced in the process of the data-entry transfer is that footnotes and remarks in the texts in most cases have not been processed.

In case *total* values have not been displayed in an Action Plan, but the subcategories have, this has not been corrected in the database. In the current report a total sum has been calculated for completeness. The idea behind this is to keep the database as close as possible to the original templates and not to commit errors in cases where the totals have been omitted on purpose.

Note that the table numbers in the sections below refer to the Template and not to the current report, unless otherwise stated⁷.

When mentioning 'the Directive' this means Directive 2009/28/EC⁸.

The sections below report database issues up to the report version of February 2011. Issues that have been encountered when evaluating the supplementary information provided by the Member States during 2011 have been documented in Section 1.8.

1.5.1 Belgium

Template Table 6 is not reported on, different units have been used in Template Tables 7 and 7a.

1.5.2 Bulgaria

For Template Tables 7 and 7a it is not clear what the unit is in which the data have been provided. It has been entered into the database as 'Unknown'.

1.5.3 Czech Republic

The data series for item (C) in Tables 4a/b ('Expected final consumption of energy from RES in transport') do not correspond: in Table 4a the series of item (J) ('Expected RES contribution to transport for the RES-T target') from Table 4b has been referred to. Moreover, the data series of item (J) ('Expected RES contribution to transport for the RES-T target') in Table 4b has not been calculated correctly. Probably the '-1' component to calculate the series has been neglected. In Table 6 only total values are reported, reason for which the table in the databasee has been left empty. Table 8 only reports an aggregate value, which cannot be considered in the database.

⁷The Template is available in all European languages from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do? uri=CELEX:32009D0548:EN:NOT. For the purpose of compiling the current report the version in English has been used as a reference.

⁸The Directive is available in all European languages from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do? uri=CELEX:32009L0028:EN:NOT. For the purpose of compiling the current report the version in English has been used as a reference.

Introduction 28 NOV 2011

The values for wind power in Tables 10a/b have been reported for the aggregate of onshore and offshore wind. In the database the entry for onshore wind power has been defined to be equal to the aggregate value (i.e. no offshore wind power in the Czech Republic). In Table 11 the values for deep geothermal seem not to have been added to the total.

1.5.4 Denmark

The trajectory as depicted in Template Table 3 differs from the trajectory calculated from Annex I of the Directive. This is presented in more detail in Table 22 on page 53 of the current report. The value '1197 ktoe' in the year 2012 for '*Final RES consumption in transport*' in Template Table 4a might not be correct but has been left unchanged in the database. In Template Table 6 more detail is presented than prescribed by the Template. These values have not been considered in the database. Template Table 7 differs slightly from the predefined format. It is unclear what values refer to production and consumption, so the data have not been considered in the database.

1.5.5 Germany

In the German Action Plan Template Table 6 is not reported. Several issues have occured in Template Tables 7 and 7a: for the year 2006 imports from EU and non-EU countries are combined. All values have been reported in the database under 'EU'. For Template Table 8 other types of agricultural area have been specified. These however have not been considered for the database. In Template Table 12 upper and lower values have been specified for Article 21.2 fuels; lower values have been included in the database.

1.5.6 Estonia

The percentages calculated in Table 3 are not a result from dividing data from Table 4a by data from Table 1, as recommended in the Template. Missing Template Tables: 6 and 8. In Template Table11 'biomass in households' is provided as a percentage instead of ktoe, most probably referring to the data for 'solid biomass' in the same table. The information however hasn't been entered into the database.

1.5.7 Ireland

Row headers seem to be mixed in Template Table 1. Under 'Reduction for aviation limit' the total consumption after reduction for aviation limit seems to be reported. The aviation reduction has been recalculated and appears to be nonzero for the years 2005 and 2010 (both scenarios) only. For Table 7 and 7a the Action Plan does not report total values per subcategory. These total values have been calculated and entered into the database. For Table 12 the 2005 total value ('1 ktoe') does not correspond to the sum of the subcategories ('2.28 ktoe'). The same row has more rounding and sum problems (possibly related to the way 'renewable electricity' has been considered.

1.5.8 Greece

An obvious error occurs in Template Table 1: the data series for 'Total consumption after reduction for aviation limit' is equal to the series in 'Final consumption in aviation'. This error is confirmed by the value '24144' in 'Expected total adjusted energy consumption in 2020' of Template Table 2. In the database no data will be reported for 'Total consumption after reduction for aviation limit' (from the third version onwards, see also Section 1.7).

28 NOV 2011 Introduction

1.5.9 Spain

No data provided for Template Tables 6 and 8. Tables 10a and 10b exclude both capacity and electricity generation for 'pumped storage hydropower' in the 'total', whereas only in electricity generation this category should not be considered.

1.5.10 France

The French action plan reports values for 2008, which haven't been considered for the database and the current report. Table 4a in the first row has a typesetting problem for the year 2015: the value '8' is not considered (the English translation mentions '150408' which probably is not correct). Also in Table 4a ambiguity is introduced between rows D and G, which differ for the years 2017 to 2019. In Table 6 values for commercial and public sectors are aggregated under 'tertiary sector'. In the database, the aggregated values have been put under 'commercial' in the database. In Table 7 the export of biomass is subdivided into 'EU' and 'non-EU'. In the database both categories have been merged. The units have not been explicitly mentioned for category (A), it is assumed that the units are in line with the Template (m³). Moreover, two values are reported for C1 (biodegradable fraction of municipal solid waste including biowaste). The value entered into the database is 50% of the waste incineration plus the amount of digestion input. In Table 7a for category B2 (by-products and processed residues from agriculture and fisheries) a value for dry and wet mass is provided. The dry mass value has been included in the database. In Table 8 (land used for other energy crops) France reports the value to be negligible, which has been interpreted as zero in the database. In Template Tables 10a/b the capacity for pumped storage hydropower has been added to total hydropower, which is not according to the template. In Table 11 renewable energy from heat pumps aggregate values have been specified for geothermal and hydrothermal sources. In the database these values are reported under 'geothermal'. In Table 2 the value for \$2005 has been adapted. According to the Directive a value of 10.3% should be reported, but a value of 9.6% is mentioned. The latter corresponds to the value provided for 2005 in Table 3. This lower value has been used as an input for calculating the indicative trajectory, which results in different reference values, see Table 28 of the current report.

1.5.11 Italy

Template Table 6 has been completed in a different way than has been done for the other countries: all categories add up to 100% instead of providing per-sector shares.

1.5.12 Cyprus

In Table 1 the application of the aviation reduction seems to be not correct, resulting in a value for 'Total consumption after reduction for aviation limit' which is too low. Applying the correction correctly would yield a value for gross final energy of 2124 ktoe instead of 2023 (-125 ktoe). Consequently, the share of renewable energy in 2020 would not be 13.0%, but 12.2% (underperformance of -0.8%). The database and the tables in the current report show the original NREAP figures. In Template Table 4b row J values reported in percentages instead of ktoe. No values have been entered into the database for this category. In Template Table 6 'industry' and 'services' are aggregated. In Table 7 imports from EU and non-EU countries have been aggregated.

1.5.13 Latvia

Template Table 6 mixes renewable electricity and renewable heat, which cannot be entered into the database. Template Table 7 does not match the prescribed format and has not been considered.

Introduction 28 NOV 2011

Template Tables 7a, 8 and 9 are missing.

1.5.14 Lithuania

Template Table 6 is not reported on. For Template Table 7 it is unclear in what unit is reported for 'Amount of domestic resource'. It is assumed for the database that all data are in m³. In Template Table 10a/b there is no subdivision made for hydropower below 10 MW. In the database the reported category '<10 MW' is entered in the database category '1 – 10 MW' and the category '<1 MW' is reported 'not available'. The value for onshore and total wind power in 2017 is reported as '5000 MW' while both 2016 and 2018 are reported '500 MW', with energy productions similar for all three years. This obvious typing error is corrected in the database: the 2017 value is put at '500 MW' (this error has not been corrected in the 'further information' document, see Section 1.8.15. In Template Table 11 no subcategorisation is specified for heat pumps. In Template Table 12 total values differ slightly from the sum of the individual contributions. Only for the year 2019 this is large: the value reported is 19% higher than calculated. In the database, the reported value has been entered.

1.5.15 Luxembourg

In Template Table 7 EU-import and non-EU-import have been aggregated.

1.5.16 Hungary

In Template Table 2 the Hungarian target value is 13% (table entry B), but in the NREAP the projected value of 14.65% is reported. In the database the target value of 13% has been entered, but the 'expected amount of energy from renewable sources' for 2020 has been unchanged ('2879 ktoe' instead of the (calculated) '2554 ktoe'. A minor deviation occurred for the trajectory value for the period 2015-2016: 8.21% was reported instead of the calculated value 8.22%. In the Hungarian NREAP Template Table 6 is not reported and Template Tables 7/7a have the energy content reported in PJ instead of ktoe. In Template Tables 10a/b and 11 no data are specified for the year 2005.

1.5.17 Malta

In Table 1 the application of the aviation reduction seems to be not correct, resulting in a value for 'Total consumption after reduction for aviation limit' which is too low. Applying the correction correctly would yield a value for gross final energy of 578.5 ktoe instead of 534.5 (-44.0 ktoe). Consequently, the share of renewable energy in 2020 would not be 10.0%, but 9.4% (underperformance of -0.6%). Template Table 6 could not be entered into the database as the categorisation doesn't correspond to Template. Template Table 10a/b specify 'small wind' separately. The values have been added to 'onshore wind' in the database.

1.5.18 Netherlands

In Template Tables 7, 10a/b, 11 and 12 only subcategory data have been reported, these have been summed and entered into the database. In Template Table 7 category C1 also specifies an additional amount of landfill gas (1.9 TJ) which has not been covered in the subtotal in *ton ns* (wet basis). In Template Table 11 an additional energy carrier is introduced: bio-SNG for grid feed-in. This option has been entered under the same name in the database.

1.5.19 Austria

The in NREAP calculated historic overall share of renewables for 2005 differs from the value in Annex I of the Directive. For the year 2005 the value from Template Tables 2 is thus not equal to the value in Template Table 3. This has been corrected in the 2011 update, see Section 1.8.20.

1.5.20 Poland

In Template Table 1 the unit is Mtoe instead of ktoe. In Template Table 6 'commercial' also comprises the 'industrial' sector. In Template Tables 7 and 7a different units have been applied, in Template Table 7a also a different categorisation. For Template Table 9 the categories of the Polish Action Plan do not match the template: data have not been entered into the database. In Template Tables 10a and 10b an additional category has been defined for wind power: 'małe instalacje' is assumed to be 'small installations' or micro-turbines, but the category is not considered in the database and 'onshore wind' and 'total wind' will not be equal (the difference being micro-turbines for 2005 – 2019).

1.5.21 Portugal

Most table numbers in the Action Plan do not correspond to the numbers in the Template. In Template Table 2 the 2005 share of renewable energy does not correspond to the value in Annex A of the Directive (for example reported is 19.8% while Annex I mentions 20.5%). Also the trajectory from the Template Table 3 differs from the calucalated trajectory. For details see Table 39 on page 58 in the current report.

1.5.22 Romania

Table 3 has been reported in multiple tables: in the database these tables have been merged. Table 4b has been reported in a different layout. This has been adjusted to match the Template. Percentages in Table 6 sum to 100% for each year instead of indicating the share of renewable energy per subsector. Moreover, series for 'Commercial' and 'Public' have been aggregated into 'Services'. In the database these aggregate values have been reported under 'Commercial' while 'Public' has been defined as not available. Finally, Table 11 (renewable heating) and Table 12 (renewable transport) have not been reported.

1.5.23 Slovenia

Minor deviations from Annex I of the Directive for the calculated renewable share in 2005 and the trajectory (2015 - 2019, see Table 41 on page 58 in the current report).

1.5.24 Slovakia

Problems occur in Template Table 7 and 7a regarding the units used, the availability of (sub)totals and incomplete data. Countardictory information is provided in a separate table (10c) on electricity from pumped storage installations. Data from Table 10c in the Slovak Action Plan have been integrated in Template Table 10a and 10b for use in the database.

Introduction 28 NOV 2011

1.5.25 Finland

For Template Table 1 only one scenario is reported. The data are assumed to refer to the 'Additional energy efficiency scenario'. Template Tables 7a and 8 are not reported on. In Table 12 the total for the year 2010 is not equal to the sum of the categories.

1.5.26 Sweden

In Template Tables 7 different units have been applied. In Template Table 8, the category 'Land used for other energy crops' a nonnumerical value of 'less than 1000 ha' (<1000) has been entered into the database (the English translation however simply mentions '1000'). In Template Tables 10a/b the capacity and energy for pumped storage hydropower has been added to total hydropower, which is not according to the template. In Template Tables 10a/b and 11 the values for liquid biomass seem not to to be added to the 'total biomass' category. Because they do appear to be included in the total value, no changes have been made regarding the database. Note that this has been corrected in the 2011 Member State update, see Section 1.8.27.

1.5.27 United Kingdom

Subcategorisation for hydropower differs from Template Table 10a/b, the breakdown has 20 MW as a reference value for most hydropower plants. This different subcategorisation cannot be considered in the database. Total values have been calculated for the period 2010 – 2020 by adding both provided categories. In Template Table 9 a deficit is reported, which is probably defined for a two-year period. As this does not meet the database format, the values have been attributed to the first years of the period mentioned (2011, 2013 and 2015). A formatting issue gives several values defined under 'district heating' and 'biomass in households' in Template Table 11 (2016 and 2020). Template Table 12 reports the values for 'imported biofuels' in [%] instead of [ktoe]. In database versions one to four (see Section 1.7) the percentage values have been entered into the database as as energy values (i.e. '83%' appeared as '0.83 ktoe' and '91%' appeared as '0.91 ktoe'). In the fifth version of the data report and database the percentage has been used to calculate the energy values in [ktoe].

1.6 A living document

All European Member States have been published an NREAP and all have been included in this report. Still, updates of the data report and database are possible, for instance to present that additional graphs, tables or indicators, or to correct erroneous data in the databse. The reader might recognise that the graphs in the current report are not available on the level of individual technologies (for example *onshore* and *offshore* wind power) but only address the aggregate technologies (*wind power* in this example). The breakdown tables however do specify on the individual technologies for primary data, but not (yet) for secondary data, the derived indicators. Requests for additional cross-sections of the database or new indicators can be communicated to nreap@ecn.nl. Also corrections or other remarks remain welcome.

1.7 Changes compared to previous versions of the report

After all NREAP documents were handed in by the Member States in January 2011, the European Commission started evaluating the plans. In this evaluation process additional information has been provided by the Member States. Various corrections and amendments to the NREAPs have

been published on the Renewable Energy Transparency Platform⁹ during 2011. At the time of writing this **fifth version** of the report, dated 28 November 2011, 20 Member States provided additional information, which has been integrated in this report. Six Member States had not provided any additional information: the Czech Republic, Estonia, Italy, Poland, Slovenia and Slovakia, where further updates may be expected. Table 15 lists for all Member States their status at the release date of the fifth report version. The current version of this report incorporates all data changes that have been made available by the Member States. In section 1.8 these changes have been documented.

Moreover, a few additional cross-sections have been added to the report. This regards 'Biomass supply' data, based on the figures provided in NREAP Template Table 7 (for 2006) and 7a (for 2015 and 2020), which have been displayed at pages 82 to 84 of this report. In addition, data on land use (page 92) and estimates for using flexible mechanisms (page 94 and 95) have been incorporated.

Finally, in this fifth version of the report some errors have been corrected compared to the fourth version. For Luxembourg errors have been corrected in Table 7 (all years): units were not correctly considered in the database, resulting in a factor 1000 difference for the 'Amount of domestic resource'. See also Section 1.8.16. For France Table 7 reported different values for 'Amount of domestic resource' and 'Net amount' in category C1, which has been corrected in the November 2011 update. For Greece typing errors have been found in the database and in the report. In Table 1 this is the case for 'heating and cooling' in the 'additional energy efficiency' scenario for

Table 15: NREAP update per Member State. Fourteen countries provided a document with 'further information', four countries resubmitted their NREAP and two countries provided an update. For six countries no further information is available

	Resubmitted	Updated	Further	No	See section
	NREAP report	report	information	information	(page)
Belgium			Х		1.8.2 (42)
Bulgaria	Х				1.8.3 (43)
Czech Republic				Х	1.8.4 (43)
Denmark			X		1.8.5 (44)
Germany					1.8.6 (44)
Estonia				X	1.8.7 (44)
Ireland			X		1.8.8 (44)
Greece	X				1.8.9 (44)
Spain			Х		1.8.10 (45)
France		Х			1.8.11 (45)
Italy				Х	1.8.12 (45)
Cyprus			X		1.8.13 (46)
Latvia			X		1.8.14 (46)
Lithuania			X		1.8.15 (46)
Luxembourg			X		1.8.16 (46)
Hungary			X		1.8.17 (46)
Malta	X				1.8.18 (47)
Netherlands			X		1.8.19 (47)
Austria			X		1.8.20 (47)
Poland				X	1.8.21 (47)
Portugal			X		1.8.22 (47)
Romania		X			1.8.23 (47)
Slovenia				X	1.8.24 (48)
Slovakia				X	1.8.25 (48)
Finland	Х				1.8.26 (48)
Sweden			X		1.8.27 (48)
United Kingdom			Х		1.8.28 (49)

⁹Renewable Energy Transparency Platform is available at http://ec.europa.eu/energy/renewables/transparency_platform_en.htm

Introduction 28 NOV 2011

2010 (is now '8644 ktoe', was '8655'), for 'Gross final energy consumption' in 2005 (is now '21649 ktoe', was '21643') and 2010 ('additional energy efficiency' scenario, is now '22418 ktoe', was '22428'). Also typing errors occurred in Table 4a, where the value for 'expected total RES consumption' in 2013 is now 2856 ktoe' (was '2845'). For the year 2010, 'Expected gross final consumption of electricity from RES' (now '674 ktoe', was '671' 10) and 'Expected RES consumption adjusted for target' (now '1793 ktoe', was '1993') were not correct. In Table 7 the value reported under C1 referred to biogas production (from landfill deposit) in the database. This has been corrected to the amount of Municipal Solid Waste (5800000 ton in 2006, 6000000 ton in 2015 and 2020). Finally, an error in the database has been corrected in Table 12, 'renewable electricity of which road transport' for 2017 (is now '1.6 ktoe', was '4.6'). Finally, for Malta various Tables have now additional decimal values, in line with the NREAP. The 2017-2018 value for 'Surplus for cooperation mechanism' in Table 3 was not correct in the database: it is now '3.14%' (was '1.7%'). Finally, for five countries the hydropower subcategory datalabels were not correct in the database, resulting in 'n.a.' entries in the data report table on hydropower for Austria, Belgium, Estonia, Hungary and Poland. Typing errors have been corrected for Portugal ('biogas installed capacity' in 2010 is now '39 MW' (was '37') and in 2014 it is now '105 MW' (was '100'). furthermore, for Portugal the 'biogas gross electricity generation' in 2010 is now '138 GWh' (was '130') and in 2014 it is now '368 GWh' (was '308'). Finally, for Portugal ('hydropower > 10 MW installed capacity' in 2005 is now '4493 MW' (was '4496'). For Slovenia, 'onshore wind gross electricity generation' in 2019 is now '191 GWh' (was '11'). For the Czech Republic in Table 10a a typing error occured: 'electricity production from photovoltaics' in 2013 is now '1698 GWh' (was '1696'). Furthermore, in Table 12 data for the period 2018 – 2020 previously were reported under 2017 – 2019 for 'Renewable electricity non-road transport', which has been corrected. For Ireland Table 12 erroneously had the values '21.2 ktoe' reported for 2005 in the categories for 'biofuels article 21.2', whereas the original table shows empty cells. For Poland the database mentioned in Table 10 a value of '1050 GWh' for 'Offshore wind' in 2020, but this should be '1500 ktoe'.

For the United Kingdom, Template Table 12 reports the values for 'imported biofuels' in [%] instead of [ktoe]. In all previous database versions the percentage values have been entered into the database as as energy values (i.e. '83%' appeared as '0.83 ktoe' and '91%' appeared as '0.91 ktoe'). In the fifth version of the data report and database the percentage has been used to calculate the energy values in [ktoe], which have now been entered into the database.

In the (fourth version of the data report and the database, dated 1 February 2011 and for the first time covering all 27 Member States) Hungary is the last and final country added. A few conceptual changes have occured in this update. To begin, this version of the report includes a section on gross final energy consumption for two scenarios (see page 62) and a section on the aggregated renewable energy data as reported in the NREAPs (see page 80). Secondly, the 'onepage overview tables' at the last section of the report have been modified: they now also express the share of the renewable technologies relative to the sector-specific final demand and total final demand, resulting in four columns lising percentages (see footnotes a to d for an explanation). Thirdly, data ranges in principle were not reported (this mainly concerned Template Table 7 and 7a in the database). In the fourth version of the database the ranges have been entered in the database separated by the word 'to': 'minimum value to maximum value'. This is the case for Germany (also Table 12, 'bio-ethanol/bio-ETBE' and 'other biofuels'), France and Cyprus (the Netherlands already features data ranges in the second version of the database). France: in Template Table 7 the export of biomass is subdivided into 'EU' and 'non-EU'. In the database both categories have been merged starting from the fourth version. Also in the fourth version a change has been made to the data for Denmark in Template Table 1: previously the data series

¹⁰Note that the total value in 2013 of '2050 ktoe' is now not correct and should be '2053 ktoe'. Likewise, the value for 'Expected RES consumption adjusted for target' should be corrected (from '1793 ktoe' to '1796'. This correction has not been performed in the database.

under 'Total transport (excl. electricity)' was reported, which has been changed into the data series reported under 'Transport, cf. Article 3(4) (a)'.

In the **third release** of the data report and database, dated 13 December 2010 and covering 26 Member States) five countries have been added: Belgium, Estonia, Latvia, Poland and Slovakia. In this version a few errors were discovered. In the Polish NREAP Template Table 1 has a unit of Mtoe instead of ktoe, which was overlooked in the third version of the database, resulting in a factor 1000 lower energy use. A typing error occurred for Finland in Template Table 1: the 'additional efficiency scenario' in 2017 erroneously was mentioned as '2770' instead of '27770' ktoe.

In the third version several errors were present, which have all been corrected in the fourth version. In Template Table 1 for Poland typing errors occured for the 'reference scenario' for 'heating and cooling' in 2018 ('32400 ktoe' was reported instead of '43200 ktoe') and for 'electricity' in 2016 ('17500 ktoe' was reported instead of '15700 ktoe'). Also the value for 'electricity' in the 'additional energy efficiency scenario' was wrong for 2019 ('13400 ktoe' was reported instead of '14300 ktoe') as well as the value for 'transport' in 2012 ('12700 ktoe' was reported instead of '17200 ktoe'). In Template Table 4b for Poland the value in 2016 was not correct for row (J) 'RES contribution to transport for the RES-T target (including double counting)' ('1235 ktoe' was reported instead of '1523 ktoe'). Furthermore, several data-problems occured for hydropower. Non-zero values were reported previously for pumped storage hydropower in Slovakia, but this should be a zero contribution. In Estonia pumped storage hydropower is available from 2017 onwards, which was not in the database. The value for 'hydropower 1 MW -10 MW' in France in 2020 was incorrect (1897 instead of 1807). The electricity production for Portugal in 2012 was reported '854 GWh' instead of '10854 GWh'. Finally, the value for 'hydropower >10 MW' in Slovenia in 2020 was not correct (1194 instead of 1176). All these errors have been corrected in the fourth version of the database and in the report. Typing errors in other entries: for Lithuania the value for onshore and total wind power in 2017 has been changed into '500 MW' instead of '5000 MW' (see Section 1.5.14). For Finland an error occurred for the entry 'solid biomass' in renewable heat (Template Table 11) for the year 2012, where '6040 ktoe' was reported instead of '3040 ktoe'. For France the 2012 value for 'Total biomass in households' in renewable heat was changed from '645' into '6945'. In the fourth version of the database and data report these errors all have been corrected.

For the second version of the data report and database (dated 1 October 2010 and covering 21 Member States) several users of the report and database have reported data-issues. These were all corrected in the third version. In the database for Portugal in Template Table 1 wrong data were entered for 2005 - 2015 and no data for 2015 - 2020, which resulted in problems in the 'Country table' for Portugal in the data report. For France, a data mismatch occured for the final consumption in aviation and for the last row presenting the total consumption after aviation reduction in Template Table 1 (wrong data for 2005 - 2016 and no data for 2016 - 2020). For the Netherlands, in the database a typing error occured in template Table 7 for the 'ktoe' entry for 'Agriculture and fisheries (by-products)' referring to the year 2006. For the same year the value for primary energy production in category 'Waste (municipal)' was corrected to '67 ktoe' (12 + 9 + 46) resulting in a subtotal of '1354 ktoe' for category 'Biomass from waste'. The Dutch data for Template Table 7a were reported in data ranges that have been included starting from the third version of the database. Subtotals for template Table 7a were calculated and entered into the database in ranges if applicable. For Finland a typing error has been corrected in the third version of the report and database in template Table 12: for the year 2013 an amount of '140 ktoe' was reported for biodiesel, this has been corrected into '240 ktoe'. For Spain a typing error occured in Template Table 1: the figure for 'heating and cooling' in 2010 was reported '3334' but should be '33340', which resulted in a data problem in the 'Country table' of the data report. An obvious error occurs for Greece in Template Table 1: the data series for 'Total consumption after reduction for aviation limit' is equal to the series in 'Final consumption in aviation'. The

Introduction 28 NOV 2011

first and second version of the data report and database simply reported the erroneous values (in the data report visible in the 'Country table' for Greece). In the database no data will be reported for 'Total consumption after reduction for aviation limit' from the third version onwards.

In the section containing the 'Country tables' (page 149 and further) several countries were concerned as a result of the following two problems. Firstly, the value for 'target 2020' in the figure titles erroneously referred to the (rounded) value of the *achieved* share of renewables instead of the Annex I target value. Moreover, in the rows for the 'Co-operation mechanisms' the values from template Table 4a 'Transfer of RES from other Member States and 3rd countries' and 'Transfer of RES to other Member States' were swapped.

In the database values in Template Table 7a were indicated as referring to 2006 instead of 2020. This has been corrected in the database version of 13 December 2010.

In the **first version** of the data report (dated 10 September 2010 and covering 19 Member States) a problem occured in the country tables (page 149 up to the end of the document): the data entries for 'Other biofuels' in the category 'Renewable production' in 'Transport' erroneously have been put at 'n.a.' for all countries. This has been corrected in the second version, for the country table and as a result for the country figures as well (where applicable).

For Ireland data updates were communicated by an Irish Government representative. This regards template Table 7a (values for 2020 (B1 / B2 / total B) changed to 335 / 440 / 775 ktoe) and template Table 11: values for Solid Biomass for 2016 and 2017 have been adjusted to 394 and 399 ktoe.

1.8 'Further information' provided by the Member States (update 2011)

1.8.1 General remarks

Table 16 indicates for all Member States in which Template Tables changes have been reported. For more detailed information see Sections 1.8.2 to 1.8.28. After processing the 'further information' that the Member States provided on their earlier submitted NREAP it can be observed that for several Member States the tables still contain a small number of errors. For example, it remains an issue whether countries consistently provided information on normalised electricity production from wind and hydropower. On electricity production from hydropower some Member States include pumping capacity in the total reported, while others do not. For a considerable number of Member States no information is provided on the import and/or export of biomass resources in the 'biomass supply' tables (7 and 7a). Member States report differently on the primary energy production from biomass: some explain this figure to be actually the primary energy value of the biomass (i.e. of the unprocessed raw material), whereas others explain that it represents the final energy value of the biomass. Quite a number of Member States report 'optional information' for table 7 as mentioned in the Template. This information has not been reported on separately in the database and in the report but it has been considered by totalling all this information when applicable. Some Member States provide additional conversion factors and assumptions for Template Tables 7 and 7a, which is not further reported on here. For Table 6 it appears the share of renewable energy in public buildings generally is not reported on, or a total share of renewable energy in buildings has been reported instead, which has not been further considered as it is not in line with the Template.

1.8.2 Belgium

For Template Table 6 *overall* figures have been presented only, instead of building-sector specific values. This has not been entered into the database. Corrected Template Tables 7 and 7a ('Biomass supply') have been provided, with various data updates. It has been noted that the sum

of the subcategories in Template Table 7a does not always match the value presented as 'total' (largest difference for 'net amount' in category B, approximately 1.5%). For Template Tables 10a and 10b detailed information is provided for hydropower categories, wind offshore and onshore and the electricity generation in CHP. In Template Table 11 detailed information is provided for the type of heat pumps, and for biomass in households (the detailed information on the Belgian regions has not been considered in the database). The 'further information' document confirms that in Template Table 12 for 'renewable electricity in road transport' the values have been presented with a weight factor of 2.5, which is not in line with the Template¹².

1.8.3 Bulgaria

Bulgaria resubmitted the NREAP document, in which all data tables have been updated. Table 1 and table 4b have been reported in two versions. For both tables the second version has been considered for the database. Table numbering deviated from the Template for Tables 8 to 10a.

1.8.4 Czech Republic

For the Czech Republic no further information has been published at the Transparency Platform at the release date of this report.

Table 16: Data table update per Member State. The table numbers refer to the Template for filling in the NREAP

Table number	1	2	3	4a	4b	6	7	7a	8	9	10a	10b	11	12	Page
Austria		Х	Х		Х			Х							47
Belgium							Χ	Х			Х	Х	Х		42
Bulgaria	Χ	Χ	Χ	Х	Χ		Χ	Χ		Χ	Х	Х		Х	43
Cyprus			Χ		Χ			Χ					Χ		46
Czech Republic															43
Denmark			Χ				Χ	Χ						Χ	44
Estonia															44
Finland						Χ	Χ	Χ	Χ		Х	Х	Χ		48
France				Χ			Χ	Χ				Х	Χ		45
Germany															44
Greece	Χ			Χ			Χ	Χ				Х		Χ	44
Hungary	Χ							Χ						Χ	46
Ireland			Χ								Х	Х			44
Italy															45
Latvia					Χ		Χ	Χ	Χ					Χ	46
Lithuania								Χ			Х	Х			46
Luxembourg							Χ	Χ							46
Malta								Χ						Χ	47
Netherlands											Х	Х			47
Poland															47
Portugal															47
Romania													Χ	Х	47
Slovakia															48
Slovenia			11												48
Spain			x^{11}						Х						45
Sweden			Х								Х	Х			48
United Kingdom								Х			Х	Х			49

¹²For example, in Table 4b the 2020 value for 'renewable electricity in road transport' is '16.6 ktoe' while in Template Table 12 a value of '41.5 ktoe' (2.5 times 16.6) has been reported. This is not correct.

Introduction 28 NOV 2011

1.8.5 Denmark

In February 2011 the Danish government has released the 'Energy Strategy 2050', in which the vision of fossil-fuel indepency has been formulated. Following this report¹³, the share of renewable energy could become 33% by 2020 (current EU-target for Denmark is 30%). New initiatives from this strategy have not been reported on in the 'further information' document for Denmark. In Template Table 3 the values for 'Overall RES share (%)' and the 'RES minimum trajectory' (both in % and in 'ktoe') were modified. In table 7 the categories 'domestic resources' and 'primary energy production' from the Template are respectively presented as 'production' and 'consumption' in the document providing 'further information'. The unit for the 'consumption' is not mentioned explicitly, and is thus assumed equal to the column for 'production'. In table 7a 'primary energy production' is denoted as 'domestic supply'. Furthermore, in Table 7 and 7a for category B1 no figures are reported as these are included in category A1 (perennial energy crops) and B2 (others crops such as grasses). Template Table 12: in the original NREAP the figures provided for bioethanol/bio-ETBE and biodiesel indicated that all biofuels in these categories are expected to be second-generation biofuels. This has been corrected now: starting from 2015 second generation biofuels will penetrate up to 50% of the consumption by 2020. The sum of the second generation biofuels in Table 12 now is consistent with data provided in Template Table 4b.

1.8.6 Germany

For Germany no further information has been published at the Transparency Platform at the release date of this report.

1.8.7 Estonia

For Estonia no further information has been published at the Transparency Platform at the release date of this report.

1.8.8 Ireland

For Ireland the following tables have been updated: 3, 10a and 10b. In Table 3 the overall RES share has been corrected for the anticipated surplus for cooperation mechanisms for the period 2011—2018. For Tables 10a/b hydropower pumped storage capacity was provided (292 MW, assumed for the whole period 2005–2020), but no energy data [GWh], reason for which data in the database have been changed from 0 (original NREAP) to 'n.a.'. For consistency reasons 'total hydropower capacity' has not been adjusted, as the further information provided is not explicit enough (breakdown of additional pumped storage capacity into capacity ranges is missing).

1.8.9 Greece

Greece resubmitted the NREAP document. In Table 1 the 'expected final electricity consumption' for 2017 for the 'additional energy efficiency' scenario was changed (is now '5470 ktoe', was '5490'). Note that in Table 1 also some typing errors have been corrected in the fifth report version, see section 1.7. In Template Table 4a the figure reported for expected total RES consumption (D) was adapted but (G) was not adjusted accordingly. In Template Table 7 only the top row of A) Biomass from forestry reports zero imports and exports. However in the database

¹³ 'Energy Strategy 2050 – from coal, oil and gas to green energy' by the Danish government, February 2011, http://www.ens.dk/Documents/Netboghandel-publikationer/2011/Energy_Strategy_2050.pdf

all imports and exports of biomass in this table are set at 0, as domestic resources and net quantities reported are equal for all categories. Total values reported in Table 12 are not a result from summing the subcategories.

In Tables 7 and 7a the values for 'Biomass from forestry' have been updated, and various missing data were provided for all reference years (2006, 2015 and 2020). Subcategories have been summed to yield total values for each of the categories A to C. For table 10a and b an additional subcategory has been inserted in the NREAP to report separately on 'solid co-fired biomass'. In the database the figures for this subcategory have been included in the 'biomass solid' figures.

1.8.10 Spain

Spain announces in the further information the forthcoming release of the '2011-20 Renewable Energy Plan' (not yet available at the time of submission of the 'further information' document 14). This document announces important changes in the RES projections. These however have not been considered in the current update of this report. Regarding the data update: in Table 3 the share of RES-T for the year 2011 is announced to be 6.2% instead of the value 6.1% mentioned in the original NREAP. For consistency reasons (i.e. changes in the underlying data are not available), no amendments have been made to the database. Furthermore, 'Agricultural land use for production of dedicated energy crops' as reported in Table 8 for the year 2006 has been changed from 'n.a.' to '0'.

1.8.11 France

Various issues in the first NREAP version (see 1.5.10) have *not* been corrected in the 'updated report' nor in the 'further information' document. This is the case for Table 4a (typesetting problem for the year 2015: '150408' instead of '15040') and in Table 11, where for renewable energy from heat pumps aggregate values have been specified for geothermal and hydrothermal sources (the database reports the sum of both values under 'geothermal'. Problems that have been adjusted are the following: in Table 4a the value for 'Expected RES consumption adjusted for target' has been corrected for the years 2018 and 2019 (now '32576' and '34357' respectively). The unit of the biomass resources reported in Table 7 under category A 'Biomass resulting from forestry' probably is 'm³ of roundwood equivalent (RWE)'. The updated NREAP has corrected values for category B 'Biomass resulting from agriculture and fishing' (both B1 and B2, total value unchanged). In category C2 an additional source is reported for the 'primary energy production': for 'biogas from industrial sewage sludge' an additional value of 24 ktoe is mentioned for the years 2006 (table 7), 2015 and 2020 (Table 7a). For consistency reasons this value has not been entered into the database. In Table 10b a few data changes occurred with respect to the first NREAP version: 'total hydropower energy' for 2016 is now '70631 GWh' (was '70961'). Likewise, solar total in 2015 is now '2981 GWh' (was '2987'). Furthermore, electric capacity for 'Tide, wave, ocean' is now '302 MW' (was '301') and 'solid biomass' in 2017 is now '1871 MW' (was '1870').

1.8.12 Italy

For Italy no further information has been published at the Transparency Platform at the release date of this report.

¹⁴Available at the time of writing this report: *Resumen del Plan de Energías Renovables 2011–2020*, 26 July 2011, http://www.idae.es/index.php/mod.documentos/mem.descarga?file=/documentos_Resumen_PER_2011-2020_ 26-julio-2011_58f27847.pdf

Introduction 28 NOV 2011

1.8.13 Cyprus

In the original NREAP Table 3 the 'RES minimum trajectory' had been provided in '%' instead of 'ktoe' and in Template Table 4b the 'Expected RES contribution to transport for the RES-T target' had been provided in '%' instead of 'ktoe', which has been corrected in the 'further information' document. In Template Table 7a additional energy carriers have been added to the 'primary energy production' for category B, Biomass from agriculture and fisheries: for B1 information has been added for 'Biodiesel for biofuel production', and for B2 information has been added for biogas, either coming from animal farm waste and used for heat production or coming from waste and used for electricity generation. The database entries have been updated to cover this additional information. In a revised Template Table 11 estimates for the quantity of biogas and solid biomass have been provided.

1.8.14 Latvia

In Template Table 4b some small changes have been suggested. New data have been provided for Template Tables 7, 7a (units unknown), 8 and 12 (small changes).

1.8.15 Lithuania

The document providing 'further information' for Lithuania provides a total share of energy from renewable sources in buildings, which have been incorporated in Table 6 (years 2005 and 2020 only). In Table 7a the 'further information' document provides data for the 'amount of domestic resource'. In Template Tables 10a/b 'pumped storage hydropower' has been added. The installed capacity has been added to the 'total hydropower' and the grand 'total' value in the table. For electricity generation this has not been done (which is in line with the Template).

1.8.16 Luxembourg

For Luxembourg the following tables have been updated: 7 and 7a. Total imports of biomass of 45 ktoe in 2020 is given as further information to table 7a, a value which is not foreseen to be reported in the Template (not considered in the database). The unit for the 'Amount of domestic resource' in the year 2006 was reported as '1000 t', which previously was not correctly entered into the database (factor 1000 was missing). For the years 2015 and 2020 the unit was not mentioned in the original NREAP. For the database it was assumed that these are identical to the year 2006, values have been corrected accordingly for all years.

1.8.17 Hungary

The document providing 'further information' for Hungary is presented in the country's national language. For Template Table 1 new data have been presented, mainly referring to the series for 'heating and cooling' and 'gross final energy consumption', in the 'additional energy efficiency' scenario for various years. For table 7a corrections have been presented for the 'primary energy production' in the category A2 ('Indirect supply of wood biomass for energy generation'). An important update in Template Table 12 refers to the fact that *all* 'other biofuels' are expected to be of the 'Article 21.2' category. In addition, the 2013 value for 'renewable electricity in non-road transport' has been updated (is now '10 ktoe', was '13').

1.8.18 Malta

In the resubmitted NREAP of Malta the layout of table 6 still deviates from that of the Template. In table 7a of the NREAP the figure for category C1 includes the quantity of category C2, and some data have been modified in the resubmitted NREAP. In Table 12 of the resubmitted NREAP some errors have been corrected: a.) the row for 'bio-ethanol/bio-ETBE Article 21(2)' has been copied to 'total bio-ethanol/bio-ETBE', b.) the row for 'biodiesel Article 21(2)' has been shifted to 'total biodiesel' and the values for the years 2019 and 2020 have been modified, c.) the data for 'renewable electricity in transport' have been modified, and d.) data for 'non-road transport' have been removed entirely from the table. As the values for 'renewable electricity in road transport' were not changed, the modifications involve no consequences for Template Table 4b.

1.8.19 Netherlands

For Template Tables 10a/b three changes have been presented: a) normalised electricity production has been given for the year 2005 for hydropower, overriding the realised values for that year, b) power capacity subcategories have been presented for hydropower, and c) a contribution from 'Tide, wave, ocean' has been made explicit (starting from 2016 onwards, previously reported under 'hydropower').

1.8.20 Austria

Data have been updated for various Template Tables. In Table 3 a deviation occurs from the Template for the 'RES minimum trajectory', both in % and in ktoe: data apparently have not been calculated using the suggested rules. Values provided for the years 2005 and 2010 for the 'RES minimum trajectory' have not been entered in the database.

Although it is stated in the 'further information' document that in Table 4b the series for '(C) Expected RES consumption in transport' has been brought in line with the series '(C) Expected final consumption of energy from RES in transport' in Table 4a for most of the years this is still not the case. The new values from Table 4b have been entered into the database. The text in the 'further information' document mentions approximate figures for import of biomass in the year 2020 (700 ktoe import from EU-countries regarding sources indirectly available for energy production (category A2) and 450 ktoe import from EU-countries regarding 'biomass from agriculture' (category B)). These data however have not been entered into the database since the Template doesn't require these numbers.

1.8.21 Poland

For Poland no further information has been published at the Transparency Platform at the release date of this report.

1.8.22 Portugal

No data changes have been reported in the 'further information' document for Portugal.

1.8.23 Romania

Romania has submitted Template Tables 11 and 12, which have been left empty in the NREAP. The total values for 'renewable heating and cooling' from Table 11 is consistent with the data

Introduction 28 NOV 2011

reported in Table 4a of the Template. In the new Template Table 12 however two problems occur: firstly, the 'total' value has been derived by summing all rows (thereby double counting all subcategories). In the database the 'wrong' total values from template Table 12 have been entered, but in this report the 'total' value for renewable transport in Table 9 on page 25 of this report has been determined by summing all subcategories, thereby by-passing the problem. Secondly, both series of 'total' values do not match the values reported in Template Table 4b under '(C) Expected RES consumption in transport'.

1.8.24 Slovenia

For Slovenia no further information has been published at the Transparency Platform at the release date of this report.

1.8.25 Slovakia

For Slovakia no further information has been published at the Transparency Platform at the release date of this report.

1.8.26 Finland

Finland resubmitted the NREAP. The following tables have been updated: 6, 7, 7a, 8, 10a, 10b and 11. As in the first NREAP, Table 1 in the resubmitted NREAP contains only the 'additional energy efficiency' and not a 'reference' scenario. In table 4b the year 2006 is mentioned in the table instead of 2005. For reasons of database consistency the 2006 value is reported under the year 2005. The same occurs for table 7a, where 2016 is mentioned instead of 2015, but this is interpreted as a typing error. A mismatch is reported between values in Table 4a column C and Table 4b. As mentioned in the question in the 'further information' document, one of the data entries should be corrected in order to report exactly the same figures, but the document doesn't provide sufficient information. No changes have been made to the database and report regarding this issue. In table 7 category A2 a non-standard energy-unit has been used: an optional information of 259.000 tonnes of processed wood-fuel has reported in the NREAP, which has not been added to the subtotal of 34.7 million m³ in the database because on inconsistency of units. The value of 193000 ton reported as 'exported processed wood-fuel' could be entered in the database without problems, but the remaining net amount of 66000 ton could not be added to the net amount of 34.7 million m³. Amounts of biomass from waste (to be reported in [ton], categories C1 to C3 in Template Table 7) could not be added because of unit-inconsistencies and deviations from the Template: 'n.a.' has been reported. In table 10 non-zero capacity data [MW] are reported for solar photovoltaic energy for the years 2018 to 2020 while zero energy production [GWh] has been defined. For the year 2020, wind power has been split into onshore and offshore capacity and energy. In Table 11 the amount of energy in district heating for the year 2005 has been modified (from 830 ktoe to 450 ktoe). For the year 2005, 'bioliquids' in Table 10a and Table 11 have been included under 'solid biomass' of the respective tables.

1.8.27 Sweden

For Sweden in Table 3 the 'RES minimum trajectory in ktoe' have been updated for the years 2011-2018. For Template Tables 10a/b three changes have been presented: a) normalised electricity production has been given for the years 2005 to 2020 for hydropower, b) pumped storage hydropower has been removed from the subtotal for hydropower and the grand total for both power and electricity generation and c) the values for liquid biomass have been added to the 'total biomass' category, which previously was not the case (see Section 1.5.26).

1.8.28 United Kingdom

In Template Table 7a the figures for the different biomass domestic supply categories do not add up to the row of totals that is given (even when disregarding the contribution from sewage sludge, category C3). On primary energy production only total values are presented, no figures by category are given. In Template Tables 10a/b hydropower pumped storage capacity has been provided. As already has been the case for the original NREAP, subcategorisation for hydropower differs from the Template format: the breakdown has been based on ROC-eligibility (mostly 20 MW) as a reference value for most hydropower plants, which has not been considered in the database.

In the document mention is made of a UK Renewable Energy Roadmap¹⁵, which is to provide more information on, among others, updated sectoral targets (i.e. renewable electricity versus heat versus transport).

¹⁵ UK Renewable Energy Roadmap, Department of Energy and Climate Change, July 2011, http://www.decc.gov.uk/assets/decc/11/meeting-energy-demand/renewable-energy/2167-uk-renewable-energy-roadmap.pdf

2 Targets and trajectories

Annex I of Directive 2009/28/EC on the promotion of the use of energy from renewable sources (23 April 2009)¹⁶ is composed of two important parts. Part A specifies the national overall targets for the share of energy from renewable sources for the year 2020 and a reference value for the year 2005. Part B defines by means of formulas an indicative trajectory for each Member State, that must be attained or exceeded in the reference years specified. As mentioned in Article 3.1 of the Directive, these mandatory national overall targets are consistent with a target of at least a 20% share of energy from renewable sources in the European Community's gross final consumption of energy in 2020.

In the current section the country-specific values for the reference values, the intermediate values and the final 2020 target for the individual Member States are presented. Table 17 shows the data from Annex I for all countries explicitly. Table 18 compares the 2005 and 2020 data from Annex I to the values from the NREAP documents. Both 2005 and 2020 values may vary; the first due to problems in reproducing the historic value and the latter for example by not reaching or by exceeding the target. Data from Table 18 are graphically displayed in Figure 2.

In Tables 20 to 45 the information from the abovementioned tables is compared on a per-country basis. It allows to see whether the trajectory is being met according to the NREAP documents.

Table 17: Renewable energy shares from Annex I of the Directive [%]

	Reference		Indicative	trajectory		Target
	2005	2011-2012	2013-2014	2015-2016	2017-2018	2020
	[%]	[%]	[%]	[%]	[%]	[%]
Belgium	2.2	4.4	5.4	7.1	9.2	13
Bulgaria	9.4	10.7	11.4	12.4	13.7	16
Czech Republic	6.1	7.5	8.2	9.2	10.6	13
Denmark	17.0	19.6	20.9	22.9	25.5	30
Germany	5.8	8.2	9.5	11.3	13.7	18
Estonia	18.0	19.4	20.1	21.2	22.6	25
Ireland	3.1	5.7	7.0	8.9	11.5	16
Greece	6.9	9.1	10.2	11.9	14.1	18
Spain	8.7	11.0	12.1	13.8	16.0	20
France	10.3	12.8	14.1	16.0	18.6	23
Italy	5.2	7.6	8.7	10.5	12.9	17
Cyprus	2.9	4.9	5.9	7.4	9.5	13
Latvia	32.6	34.1	34.8	35.9	37.4	40
Lithuania	15.0	16.6	17.4	18.6	20.2	23
Luxembourg	0.9	2.9	3.9	5.4	7.5	11
Hungary	4.3	6.0	6.9	8.2	10.0	13
Malta	0.0	2.0	3.0	4.5	6.5	10
Netherlands	2.4	4.7	5.9	7.6	9.9	14
Austria	23.3	25.4	26.5	28.1	30.3	34
Poland	7.2	8.8	9.5	10.7	12.3	15
Portugal	20.5	22.6	23.7	25.2	27.3	31
Romania	17.8	19.0	19.7	20.6	21.8	24
Slovenia	16.0	17.8	18.7	20.1	21.9	25
Slovakia	6.7	8.2	8.9	10.0	11.4	14
Finland	28.5	30.4	31.4	32.8	34.7	38
Sweden	39.8	41.6	42.6	43.9	45.8	49
United Kingdom	1.3	4.0	5.4	7.5	10.2	15

All percentages originate from Annex I of Directive 2009/28/EC. The indicative trajectory has been calculated from Part B of the Annex

¹⁶Directive 2009/28/EC is available from the Transparency Platform on renewable energy (http://ec.europa.eu/energy/renewables/transparency_platform/transparency_platform_en.htm). The direct link to the document in all European languages is http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT

Figure 2: Renewable energy shares according to Annex I of Directive 2009/28/EC and according to the NREAP documents (Table 3 of the Template)

Table 18: Renewable energy shares according to Annex I of Directive 2009/28/EC and according to the NREAP documents (Table 3 of the Template)

	2	005	2	020
	Target	NREAP	Target	NREAP
	[%]	[%]	[%]	[%]
Belgium	2.2	2.2	13.0	13.0
Bulgaria	9.4	9.6	16.0	16.0
Czech Republic	6.1	6.1	13.0	13.5
Denmark	17.0	17.0	30.0	30.4
Germany	5.8	6.5	18.0	19.6
Estonia	18.0	16.6	25.0	25.0
Ireland	3.1	3.1	16.0	16.0
Greece	6.9	7.0	18.0	18.0
Spain	8.7	8.3	20.0	22.7
France	10.3	9.6	23.0	23.0
Italy	5.2	4.9	17.0	17.0
Cyprus	2.9	2.9	13.0	13.0
Latvia	32.6	32.6	40.0	40.0
Lithuania	15.0	15.0	23.0	24.0
Luxembourg	0.9	0.9	11.0	11.0
Hungary	4.3	4.2	13.0	14.7
Malta	0.0	n.a.	10.0	10.2
Netherlands	2.4	2.5	14.0	14.5
Austria	23.3	23.3	34.0	34.2
Poland	7.2	n.a.	15.0	15.5
Portugal	20.5	19.8	31.0	31.0
Romania	17.8	17.9	24.0	24.0
Slovenia	16.0	16.2	25.0	25.3
Slovakia	6.7	6.7	14.0	14.0
Finland	28.5	28.8	38.0	38.0
Sweden	39.8	39.7	49.0	50.2
United Kingdom	1.3	1.4	15.0	15.0

Both reference (due to problems in reproduing the historic value) and target (for example by not reaching or by exceeding it) may vary between Annex I of the Directive and the data from the NREAP documents

Table 19: Belgium: indicative trajectory for the overall renewable energy share [%] for the	,
reference years as mentioned in Annex I part B of Directive 2009/28/EC	

Period	Annex I part B	NREAP					
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]		
2011-2012	4.4	4.4	4.4	5.2	4.8		
2013-2014	5.4	5.4	5.8	6.8	6.3		
2015-2016	7.1	7.1	7.5	8.6	8.1		
2017-2018	9.2	9.2	9.5	10.7	10.1		
2020	13.0	13.0	13.0		13.0		

For more detail on Belgium see the country factsheet on page 209. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 20: Bulgaria: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP					
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]		
2011-2012 2013-2014	10.7 11.4	10.7 11.4	10.7 11.4	10.7 11.4	10.7 11.4		
2015-2016 2017-2018 2020	12.4 13.7 16.0	12.4 13.7 16.0	12.4 13.7 16.0	12.4 13.7	12.4 13.7 16.0		

For more detail on Bulgaria see the country factsheet on page 211. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 21: Czech Republic: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP					
		Template Table 3 [%]	First year [%]	Second year [%]	Average [%]		
2011-2012	7.5	7.5	9.4	10.1	9.8		
2013-2014	8.2	8.2	10.8	11.3	11.1		
2015-2016	9.2	9.2	11.8	12.1	12.0		
2017-2018	10.6	10.6	12.5	12.9	12.7		
2020	13.0	13.0	13.5		13.5		

For more detail on Czech Republic see the country factsheet on page 213. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 22: Denmark: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		NREAP					
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]			
2011-2012 2013-2014 2015-2016 2017-2018 2020	19.6 20.9 22.9 25.5 30.0	19.6 20.9 22.9 25.5 30.0	23.4 27.3 27.6 28.6 30.4	24.2 27.2 28.2 29.1	23.8 27.3 27.9 28.9 30.4			

For more detail on Denmark see the country factsheet on page 215. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 23: Germany: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP					
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]		
2011-2012	8.2	8.2	10.8	11.4	11.1		
2013-2014	9.5	9.5	12.0	12.8	12.4		
2015-2016	11.3	11.3	13.5	14.4	14.0		
2017-2018	13.7	13.7	15.7	16.7	16.2		
2020	18.0	18.0	19.6		19.6		

For more detail on Germany see the country factsheet on page 217. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 24: Estonia: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP						
		Template Table 3 [%]	First year [%]	Second year [%]	Average [%]			
2011-2012 2013-2014	19.4 20.1	19.4 20.1	21.2 23.3	22.0 23.4	21.6 23.4			
2015-2016	21.2	21.2	23.6	23.7	23.7			
2017-2018 2020	22.6 25.0	22.6 25.0	24.2 25.0	24.5	24.4 25.0			

For more detail on Estonia see the country factsheet on page 219. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 25: Ireland: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP				
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]	
2011-2012	5.7	5.7	6.7	7.6	7.2	
2013-2014	7.0	7.0	8.6	9.1	8.9	
2015-2016	8.9	8.9	10.3	10.7	10.5	
2017-2018	11.5	11.5	11.9	13.0	12.5	
2020	16.0	16.0	16.0		16.0	

For more detail on Ireland see the country factsheet on page 221. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 26: Greece: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	9.1	9.1	8.8	9.5	9.2
2013-2014	10.2	10.2	9.9	10.5	10.2
2015-2016	11.9	11.9	11.4	12.4	11.9
2017-2018	14.1	14.1	13.7	14.6	14.2
2020	18.0	18.0	18.0		18.0

For more detail on Greece see the country factsheet on page 223. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 27: Spain: indicative trajectory for the overall renewable energy share [%] for the
reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		NREAP		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012 2013-2014 2015-2016	11.0 12.1 13.8	11.0 12.1 13.8	14.2 15.4 17.4	14.8 16.5 18.3	14.5 16.0 17.9
2017-2018 2020	16.0 20.0	15.6 16.1 20.0	17.4 19.4 22.7	20.4	19.9 19.9 22.7

For more detail on Spain see the country factsheet on page 225. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 28: France: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		NREAP		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012 2013-2014	12.8 14.1	12.2 13.5	13.5 15.0	14.0 16.0	13.8 15.5
2015-2016 2017-2018 2020	16.0 18.6 23.0	15.5 18.3 23.0	17.0 19.5 23.0	18.0 20.5	17.5 20.0 23.0

For more detail on France see the country factsheet on page 227. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 29: Italy: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		NREA	P	
	[%]	Template Table 3	First year [%]	Second year [%]	Average [%]
2011-2012	7.6	7.6	8.7	9.2	8.9
2013-2014	8.7	8.7	9.9	10.5	10.2
2015-2016 2017-2018	10.5 12.9	10.5 12.9	11.2 12.9	12.0 13.8	11.6 13.4
2020	17.0	17.0	17.0	13.0	17.0

For more detail on Italy see the country factsheet on page 229. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 30: Cyprus: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP			
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	4.9	4.9	6.8	7.1	7.0
2013-2014	5.9	5.9	7.8	8.4	8.1
2015-2016	7.4	7.5	9.0	9.7	9.4
2017-2018	9.5	9.5	10.4	11.2	10.8
2020	13.0	13.0	13.0		13.0

For more detail on Cyprus see the country factsheet on page 231. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 31: Latvia: indicative trajectory for the overall renewable energy share [%] for the
reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	34.1	34.1	33.8	34.3	34.1
2013-2014	34.8	34.8	34.7	35.0	34.9
2015-2016	35.9	35.9	35.6	36.3	36.0
2017-2018	37.4	37.4	37.0	37.7	37.4
2020	40.0	40.0	40.0		40.0

For more detail on Latvia see the country factsheet on page 233. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 32: Lithuania: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		NREAP			
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]	
2011-2012	16.6	16.6	17.0	18.0	17.5	
2013-2014	17.4	17.4	19.0	20.0	19.5	
2015-2016	18.6	18.6	21.0	22.0	21.5	
2017-2018	20.2	20.2	24.0	24.0	24.0	
2020	23.0	23.0	24.0		24.0	

For more detail on Lithuania see the country factsheet on page 235. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 33: Luxembourg: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP				
	•	Template Table 3	First year [%]	Second year [%]	Average [%]	
	[%]	[%]				
2011-2012	2.9	2.9	2.9	2.9	2.9	
2013-2014	3.9	3.9	3.9	3.9	3.9	
2015-2016	5.4	5.5	5.4	5.4	5.4	
2017-2018	7.5	7.5	7.5	7.5	7.5	
2020	11.0	11.0	11.0		11.0	

For more detail on Luxembourg see the country factsheet on page 237. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 34: Hungary: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP				
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]	
2011-2012	6.0	6.0	7.3	7.4	7.4	
2013-2014	6.9	6.9	7.5	8.0	7.8	
2015-2016	8.2	8.2	8.3	9.3	8.8	
2017-2018	10.0	10.0	10.7	12.3	11.5	
2020	13.0	13.0	14.7		14.7	

For more detail on Hungary see the country factsheet on page 239. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 35: Malta: indicative trajectory for the overall renewable energy share [%] for the
reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	2.0	2.0	2.3	2.6	2.5
2013-2014	3.0	3.0	3.8	5.4	4.6
2015-2016	4.5	4.5	5.5	6.8	6.2
2017-2018	6.5	6.5	9.7	9.6	9.7
2020	10.0	10.0	10.2		10.2

For more detail on Malta see the country factsheet on page 241. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 36: Netherlands: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	4.7	4.7	4.6	5.6	5.1
2013-2014	5.9	5.9	6.6	7.7	7.2
2015-2016	7.6	7.6	8.5	9.7	9.1
2017-2018	9.9	9.9	10.9	12.1	11.5
2020	14.0	14.0	14.5		14.5

For more detail on Netherlands see the country factsheet on page 243. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 37: Austria: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3	First year	Second year	Average
		[%]	[%]	[%]	[%]
2011-2012	25.4	26.3	31.4	31.6	31.5
2013-2014	26.5	27.3	31.8	32.1	32.0
2015-2016	28.1	28.7	32.3	32.6	32.5
2017-2018	30.3	30.6	32.9	33.3	33.1
2020	34.0	34.0	34.2		34.2

For more detail on Austria see the country factsheet on page 245. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 38: Poland: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		NREA	P	
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	8.8	8.8	10.1	10.6	10.3
2013-2014	9.5	9.5	11.1	11.5	11.3
2015-2016	10.7	10.7	11.9	12.5	12.2
2017-2018	12.3	12.3	13.1	13.8	13.5
2020	15.0	15.0	15.5		15.5

For more detail on Poland see the country factsheet on page 247. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 39: Portugal: indicative trajectory for the overall renewable energy share [%] for the
reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B	NREAP				
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]	
2011-2012 2013-2014 2015-2016 2017-2018 2020	22.6 23.7 25.2 27.3 31.0	22.0 23.1 24.8 27.1 31.0	25.2 27.1 28.4 29.7 31.0	26.9 27.4 28.9 30.6	26.1 27.3 28.7 30.2 31.0	

For more detail on Portugal see the country factsheet on page 249. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 40: Romania: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	19.0	19.0	18.0	19.0	18.5
2013-2014	19.7	19.7	19.4	19.7	19.6
2015-2016	20.6	20.6	20.1	20.6	20.4
2017-2018	21.8	21.8	21.2	21.8	21.5
2020	24.0	24.0	24.0		24.0

For more detail on Romania see the country factsheet on page 251. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 41: Slovenia: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	Times I part B	Template Table 3	First year	Second year	Average
	[%]	[%]	[%]	[%]	[%]
2011-2012	17.8	17.8	18.2	18.7	18.5
2013-2014	18.7	18.7	19.5	20.1	19.8
2015-2016	20.1	20.0	21.2	21.8	21.5
2017-2018	21.9	21.8	22.4	23.6	23.0
2020	25.0	25.0	25.3		25.3

For more detail on Slovenia see the country factsheet on page 253. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 42: Slovakia: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	8.2	8.2	8.2	8.2	8.2
2013-2014	8.9	8.9	8.9	8.9	8.9
2015-2016	10.0	10.0	10.0	10.0	10.0
2017-2018	11.4	11.4	11.4	11.4	11.4
2020	14.0	14.0	14.0		14.0

For more detail on Slovakia see the country factsheet on page 255. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 43: Finland: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	30.4	30.4	30.1	31.0	30.6
2013-2014	31.4	31.4	31.6	32.2	31.9
2015-2016	32.8	32.8	32.6	33.6	33.1
2017-2018	34.7	34.7	34.7	35.7	35.2
2020	38.0	38.0	38.0		38.0

For more detail on Finland see the country factsheet on page 257. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 44: Sweden: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		P		
	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012 2013-2014	41.6 42.6	41.6 42.6	44.2 45.6	44.9 46.3	44.6 46.0
2015-2016 2017-2018 2020	43.9 45.8 49.0	43.9 45.8 49.0	47.0 48.3 50.2	47.7 49.0	47.4 48.7 50.2

For more detail on Sweden see the country factsheet on page 259. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Table 45: United Kingdom: indicative trajectory for the overall renewable energy share [%] for the reference years as mentioned in Annex I part B of Directive 2009/28/EC

Period	Annex I part B		NREA	P	
Tenoc	[%]	Template Table 3 [%]	First year [%]	Second year [%]	Average [%]
2011-2012	4.0	4.0	4.0	4.0	4.0
2013-2014	5.4	5.4	5.0	6.0	5.5
2015-2016	7.5	7.5	7.0	8.0	7.5
2017-2018	10.2	10.2	9.0	11.0	10.0
2020	15.0	15.0	15.0		15.0

For more detail on United Kingdom see the country factsheet on page 261. The reference to Table 3 is to the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Gross final energy consumption

This section presents the gross final energy data as presented in Template Table 1. This table in the Template gives expected gross final energy consumption in heating and cooling, electricity and transport. Starting with an identical value for the base year 2005, two scenarios are available: a 'reference scenario' and an 'additional energy efficiency scenario'. The gross final energy consumption for the purpose of measuring target compliance and evaluating the indicative trajectory (see Table 17 on page 51) is corrected for those Member States that have a large share of aviation in their gross final consumption of energy (see Article 5.6 in the Renewable Energy Directive (2009/28/EC)¹⁷. The amount by which these countries exceed one-and-a-half times the European Community average gross final consumption of energy in aviation in 2005 will be partially exempted. This results in a value 'before aviation reduction' and an a value 'after aviation reduction', which have been reported in separate tables in this report.

As not all Member States apply the aviation reduction, the set of tables is not filled for each country. Unavailable data are replaced by data matching most closely. The countries without *Reference scenario*' (Finland, the Netherlands and Slovenia) will report the series for 'Additional energy efficiency' for both scenarios. Member States without an 'aviation reduction' report the values without the reduction only, also in the table 'after aviation reduction'. Doing so, the sum of all countries can be determined even in the case of data unavailability.

Table 46 indicates the availability of the scenarios and the aviation reduction for each Member State.

¹⁷At http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT the Renewable Energy Directive is available for download

Table 46: Availability of scenarios and the aviation reduction for each Member State. Unavailable data are replaced by data matching most closely in order to report the sum of all countries.

					Final consumption	sumption				
	Heating a	Heating and cooling	Electricity	ricity	Tran	Transport	Total before aviation	re aviation	Total after aviation	aviation
Table (page)	Reference 49 (66)	Efficiency 50 (67)	Reference 47 (64)	Efficiency 48 (65)	Reference 51 (68)	Efficiency 52 (69)	Reference 53 (70)	Efficiency 54 (71)	Reference 55 (72)	Efficiency 56 (73)
Belgium	×	×	×	×	×	×	×	×	n.a.	n.a.
Bulgaria	×	×	×	×	×	×	×	×	n.a.	n.a.
Czech Republic	×	×	×	×	×	×	×	×	n.a.	n.a.
Denmark	×	×	×	×	×	×	×	×	×	×
Germany	×	×	×	×	×	×	×	×	n.a.	n.a.
Estonia	×	×	×	×	×	×	×	×	n.a.	×
Ireland	×	×	×	×	×	×	×	×	×	×
Greece	×	×	×	×	×	×	×	×	n.a.	n.a.
Spain	×	×	×	×	×	×	×	×	×	n.a.
France	×	×	×	×	×	×	×	×	n.a.	×
Italy	×	×	×	×	×	×	×	×	n.a.	n.a.
Cyprus	×	×	×	×	×	×	×	×	×	×
Latvia	×	×	×	×	×	×	×	×	n.a.	n.a.
Lithuania	×	×	×	×	×	×	×	×	n.a.	n.a.
Luxembourg	×	×	×	×	×	×	×	×	×	×
Hungary	×	×	×	×	×	×	×	×	n.a.	n.a.
Malta	×	×	×	×	×	×	×	×	n.a.	n.a.
Netherlands	n.a.	×	n.a.	×	n.a.	×	n.a.	×	n.a.	×
Austria	×	×	×	×	×	×	×	×	n.a.	n.a.
Poland	×	×	×	×	×	×	×	×	n.a.	n.a.
Portugal	×	×	×	×	×	×	×	×	n.a.	×
Romania	×	×	×	×	×	×	×	×	n.a.	n.a.
Slovenia	n.a.	×	n.a.	×	n.a.	×	n.a.	×	n.a.	n.a.
Slovakia	×	×	×	×	×	×	×	×	n.a.	n.a.
Finland	n.a.	×	n.a.	×	n.a.	×	n.a.	×	n.a.	n.a.
Sweden	×	×	×	×	×	×	×	×	n.a.	n.a.
United Kingdom	×	×	×	×	×	×	×	×	×	×

Table 47: Total final energy consumption [ktoe] electricity for the reference scenario

27/7/7	320177	315643	311148	306623	302377	298234	294030	289924	285731	268393	Mixed scenarios	All Member States (total)
١	33700	33500	33300	33100	32900	32600	32300	32000	31800	32100	Reference scenario	United Kingdom
_	14712	14579	14446	14314	14181	14048	13915	13783	13650	12987	Reference scenario	Sweden
∞	8500	8400	8310	8210	8100	7990	7880	7770	7550	7530	Additional efficiency	Finland
3(2950	2898	2846	2796	2747	2698	2650	2603	2460	2412	Reference scenario	Slovakia
13	1322	1312	1303	1293	1274	1254	1235	1216	1196	1272	Additional efficiency	Slovenia
72	6980	6740	6445	6189	6066	5994	5864	5710	5350	4601	Reference scenario	Romania
565	5593	5327	5201	5076	4847	4825	4783	4748	4730	4558	Reference scenario	Portugal
17100	16600	16200	15700	15300	14900	14400	14000	13400	12900	n.a.	Reference scenario	Poland
6545	6425	6308	6199	6091	5991	5892	5795	5709	5634	5725	Reference scenario	Austria
11587	11493	11398	11304	11210	11093	10976	10860	10743	10627	10347	Additional efficiency	Netherlands
284	277	271	265	258	251	245	238	231	226	n.a.	Reference scenario	Malta
444	4383	4316	4245	4169	4089	4001	3922	3801	3682	3609	Reference scenario	Hungary
595	588	581	574	568	565	562	559	556	553	567	Reference scenario	Luxembourg
1168	1133	1097	1075	1053	1029	1005	973	940	913	985	Reference scenario	Lithuania
827	795	764	733	686	657	636	618	603	588	581	Reference scenario	Latvia
661	639	617	595	573	551	530	508	486	464	374	Reference scenario	Cyprus
34331	33662	33025	32423	31853	31317	30814	30344	29908	29505	29749	Reference scenario	Italy
51088	50676	50263	49851	49439	49027	48615	48202	47790	47378	45317	Reference scenario	France
34517	33271	32072	30926	29647	28589	27571	26428	25616	25056	25080	Reference scenario	Spain
6053	5842	5727	5586	5480	5456	5429	5376	5348	5061	5486	Reference scenario	Greece
2904	2872	2840	2806	2764	2697	2632	2574	2525	2511	2341	Reference scenario	Ireland
936	921	907	892	896	883	869	856	842	829	738	Reference scenario	Estonia
52733	52767	52728	52689	52554	52454	52331	52232	52063	51973	51813	Reference scenario	Germany
3536	3507	3483	3454	3418	3367	3308	3247	3199	3144	3166	Reference scenario	Denmark
7427	7309	7189	7039	6903	6761	6621	6480	6338	6151	6014	Reference scenario	Czech Republic
3547	3498	3450	3402	3355	3309	3263	3218	3174	3130	3129	Reference scenario	Bulgaria
9874	9762	9651	9539	9428	9276	9125	8973	8822	8670	7912	Reference scenario	Belgium
[ktoe]												
2019	2018	201/	2016	2015	2014	2013	2102	2011	2010	2002	Scenaro	

For the Netherlands, Slovenia and Finland the 'Reference scenario' is not available. For these Member States, projections have been taken as reported for the 'Additional efficiency scenario', see

together amounting to 13.1 Mtoe). For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010

Table 48: Final energy consumption [ktoe] for electricity for the additional energy efficiency scenario

	Scenario	2005 [ktoe]	2010 [ktoe]	2011 [ktoe]	2012 [ktoe]	2013 [ktoe]	2014 [ktoe]	2015 [ktoe]	2016 [ktoe]	2017 [ktoe]	2018 [ktoe]	2019 [ktoe]	2020 [ktoe]	2020 [%]
Belgium Bulcaria	Additional efficiency	7912	8371	8462	8554	8646	8737	8829	8968	9108	9247	9387	9526	8 -
Czech Republic	Additional efficiency	6014	6036	6210	6329	6449	6568	2699	6807	6927	7022	7118	7232	7
Denmark	Additional efficiency	3166	3108	3130	3148	3179	3214	3234	3237	3235	3233	3238	3247	1
Germany	Additional efficiency	51813	51925	51830	51615	51352	51089	50588	50229	49799	49346	48844	48317	16
Estonia	Additional efficiency	738	829	840	851	862	873	884	880	894	606	923	938	0
Ireland	Additional efficiency	2341	2473	2469	2500	2540	2587	2636	2677	2713	2746	2779	2813	-
Greece	Additional efficiency	5486	5061	5215	5209	5227	5217	5285	5345	5470	5583	5752	5887	2
Spain	Additional efficiency	25080	25056	25513	26105	26951	27593	28264	29140	29863	30625	31421	32269	==
France	Additional efficiency	45317	45849	45955	46062	46168	46275	46381	46487	46594	46700	46807	46913	15
Italy	Additional efficiency	29749	30701	30856	31009	31161	31313	31465	31618	31770	31922	32075	32227	11
Cyprus	Additional efficiency	374	463	480	497	514	531	548	564	581	869	615	633	0
Latvia	Additional efficiency	581	584	296	809	620	633	646	999	684	704	725	746	0
Lithuania	Additional efficiency	985	911	937	970	1002	1025	1048	1069	1090	1124	1158	1193	0
Luxembourg	Additional efficiency	267	549	548	547	546	545	544	549	554	559	564	569	0
Hungary	Additional efficiency	3609	3675	3785	3898	3969	4047	4118	4185	4247	4308	4363	4418	-
Malta	Additional efficiency	n.a.	215	220	226	232	238	244	249	254	259	265	270	0
Netherlands	Additional efficiency	10347	10627	10743	10860	10976	11093	11210	11304	11398	11493	11587	11681	4
Austria	Additional efficiency	5725	5634	5656	5684	5719	5763	5817	5885	5971	2209	6210	6377	2
Poland	Additional efficiency	n.a.	12100	12300	12500	12700	12900	13100	13400	13700	14000	14300	14600	5
Portugal	Additional efficiency	4558	4730	4748	4783	4825	4847	5076	5169	5262	5491	5518	5547	2
Romania	Additional efficiency	4601	5350	5383	5432	5527	5568	5655	2190	5975	8609	6216	6334	2
Slovenia	Additional efficiency	1272	1196	1216	1235	1254	1274	1293	1303	1312	1322	1332	1342	0
Slovakia	Additional efficiency	2412	2460	2556	2586	2617	2649	2681	2713	2745	2778	2812	2866	_
Finland	Additional efficiency	7530	7550	7770	7880	7990	8100	8210	8310	8400	8500	8640	8740	3
Sweden	Additional efficiency	12987	13089	13109	13130	13150	13170	13191	13211	13232	13252	13273	13293	4
United Kingdom	Additional efficiency	32100	31700	31700	31800	31900	32000	32100	32100	32100	32200	32300	32400	11
All Member States (total)	Additional efficiency	268393	283372	285391	287200	289257	291024	292915	295017	297033	299244	301366	303526	100

For the 'additional energy efficiency' scenario all Member States have provided data.

For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010). together amounting to 12.3 Mtoe).

Table 49: Total final energy consumption [ktoe] heating and cooling for the reference scenario

	Scellatio	[ktoe]	[%]											
Belgium	Reference scenario	21804	21804	21804	21804	21804	21804	21804	21804	21804	21804	21804	21804	4
Bulgaria	Reference scenario	4543	4851	4854	5036	5258	5461	5640	5765	5898	6008	6105	6193	_
Czech Republic	Reference scenario	17644	18326	18417	18419	18514	18645	18856	19008	19170	19554	19783	19992	ω
Denmark	Reference scenario	8071	8161	8232	8320	8400	8467	8512	8542	8576	8614	8667	8727	2
Germany	Reference scenario	116842	111661	111063	110132	108794	107528	106215	105164	103420	101748	100172	98766	17
Estonia	Reference scenario	1615	1592	1601	1610	1619	1628	1637	1649	1661	1673	1686	1698	0
Ireland	Reference scenario	5516	5184	5233	5216	5248	5307	5388	5477	5546	5613	5668	5724	_
Greece	Reference scenario	8355	8644	8401	8439	8464	8595	8743	8875	9070	9228	9423	9600	2
Spain	Reference scenario	40254	33340	32649	32559	32393	32318	32315	32259	32180	32067	31932	31837	5
France	Reference scenario	68949	72333	73009	73686	74363	75040	75716	76393	77070	77747	78423	79100	14
Italy	Reference scenario	68501	64194	64491	64774	65041	65294	65532	65755	65963	66157	66335	66499	=
Cyprus	Reference scenario	530	480	483	489	499	508	517	525	533	540	546	551	0
Latvia	Reference scenario	2607	2271	2316	2361	2416	2493	2604	2779	2962	2994	3042	3114	_
Lithuania	Reference scenario	2583	2417	2448	2497	2545	2621	2697	2724	2750	2795	2841	2886	0
Luxembourg	Reference scenario	1189	1293	1303	1313	1324	1334	1344	1363	1381	1399	1417	1436	0
Hungary	Reference scenario	12192	10520	10780	10994	11322	11116	11008	10887	10759	10625	10476	10412	2
Malta	Reference scenario	n.a.	46	56	58	60	63	66	68	70	72	74	76	0
Netherlands	Additional efficiency	28436	24612	24614	24615	24616	24617	24618	24692	24766	24840	24914	24989	4
Austria	Reference scenario	13206	12007	12172	12360	12572	12788	13009	13245	13485	13743	14005	14274	2
Poland	Reference scenario	n.a.	31600	33000	34700	35900	37300	38800	40300	41800	43200	44700	46200	8
Portugal	Reference scenario	7927	7286	7370	7454	7538	7622	7706	7839	7972	8105	8238	8371	_
Romania	Reference scenario	18779	16056	16106	16643	17303	18093	18943	19179	19460	19790	20164	20696	4
Slovenia	Additional efficiency	2291	1996	2008	2019	2031	2043	2054	2049	2044	2039	2034	2029	0
Slovakia	Reference scenario	6162	5971	6019	6067	6114	6162	6210	6258	6306	6353	6401	6449	1
Finland	Additional efficiency	13970	14010	14380	14540	14670	14830	15000	15080	15120	15170	15260	15300	w
Sweden	Reference scenario	13190	15339	15769	16199	16628	17058	17488	17918	18347	18777	19207	19637	₃
United Kingdom	Reference scenario	66900	60000	59200	58600	58100	57500	56900	56300	55800	55500	55100	54800	9
All Member States (total)	Mixed scenarios	552056	555994	557778	560904	563536	566235	569322	571897	573913	576155	578417	581160	100

For the Netherlands, Slovenia and Finland the 'Reference scenario' is not available. For these Member States, projections have been taken as reported for the 'Additional efficiency scenario', see Table 50.

together amounting to 31.6 Mtoe). For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010

Table 50: Final energy consumption [ktoe] for heating and cooling for the additional energy efficiency scenario

	Scenario	2005 [ktoe]	2010 [ktoe]	2011 [ktoe]	2012 [ktoe]	2013 [ktoe]	2014 [ktoe]	2015 [ktoe]	2016 [ktoe]	2017 [ktoe]	2018 [ktoe]	2019 [ktoe]	2020 [ktoe]	2020
Belgium	Additional efficiency	21804	21804	21804	21804	21804	21804	21804	21804	21804	21804	21804	21804	4
Bulgaria	Additional efficiency	4543	4492	4413	4462	4509	4538	4539	4494	4557	4611	4626	4638	_
Czech Republic	Additional efficiency	17644	17805	17837	17765	17778	17821	17963	18083	18205	18560	18742	18680	4
Denmark	Additional efficiency	8071	8042	8021	8021	8012	7991	7929	7858	7795	7732	0692	7653	-
Germany	Additional efficiency	116842	111597	110681	109081	107361	105498	103588	101581	99551	97449	95276	93139	18
Estonia	Additional efficiency	1615	1572	1573	1574	1575	1576	1577	1577	1578	1578	1579	1579	0
Ireland	Additional efficiency	5516	5160	5139	5065	5041	5043	6905	5102	9909	5029	4980	4931	-
Greece	Additional efficiency	8355	8644	8375	8376	8474	8517	8658	8859	9013	9166	9401	9674	2
Spain	Additional efficiency	40254	33340	32465	32349	31984	31671	31452	31181	30894	30546	30189	29849	9
France	Additional efficiency	68949	99659	62369	64773	64176	63580	62983	62386	61790	61193	60597	00009	12
Italy	Additional efficiency	68501	58976	59197	59418	59639	29860	60081	60301	60522	60743	60964	61185	12
Cyprus	Additional efficiency	530	480	480	484	492	499	509	512	517	521	525	527	0
Latvia	Additional efficiency	2607	2251	2285	2319	2354	2389	2425	2461	2497	2535	2573	2612	-
Lithuania	Additional efficiency	2583	2417	2428	2454	2481	2514	2601	2618	2634	2650	2667	2684	_
Luxembourg	Additional efficiency	1189	1235	1235	1235	1234	1234	1234	1241	1248	1255	1262	1268	0
Hungary	Additional efficiency	12192	10497	10724	10976	11195	10920	10742	10541	10360	10181	10028	242	2
Malta	Additional efficiency	n.a.	45	55	99	28	09	63	65	29	69	71	73	0
Netherlands	Additional efficiency	28436	24612	24614	24615	24616	24617	24618	24692	24766	24840	24914	24989	5
Austria	Additional efficiency	13206	12007	12031	12061	12099	12145	12203	12276	12367	12481	12624	12802	2
Poland	Additional efficiency	n.a.	32400	32500	32700	32800	32900	33100	33400	33800	34100	34400	34700	7
Portugal	Additional efficiency	7927	7286	7370	7454	7538	7622	2106	7807	9062	8004	8101	8197	2
Romania	Additional efficiency	18779	15788	16184	16525	16840	17210	17572	17708	17818	17973	18140	18316	4
Slovenia	Additional efficiency	2291	1996	2008	2019	2031	2043	2054	2049	2044	2039	2034	2029	0
Slovakia	Additional efficiency	6162	5971	5923	5876	5828	5780	5732	5885	5661	5637	5613	5613	_
Finland	Additional efficiency	13970	14010	14380	14540	14670	14830	15000	15080	15120	15170	15260	15300	ю
Sweden	Additional efficiency	13190	14448	14700	14951	15203	15455	15706	15958	16209	16461	16713	16964	3
United Kingdom	Additional efficiency	00699	00009	28900	28000	57100	56200	55300	54400	53500	52900	52200	51500	10
All Member States (total)	Additional efficiency	552056	542841	540691	538953	536892	534317	532208	529719	527289	525227	522973	520583	100

For the 'additional energy efficiency' scenario all Member States have provided data.

For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010). together amounting to 32.4 Mtoe).

Table 51: Total final energy consumption [ktoe] transport for the reference scenario

24//25	344365	341825	339286	336591	333674	330323	327212	323726	321570	299104	Mixed scenarios	All Member States (total)
	41957	42013	42030	42002	41936	41746	41427	40935	40485	41704	Reference scenario	United Kingdom
	8643	8553	8463	8373	8283	8193	8103	8013	7923	7473	Reference scenario	Sweden
	4150	4150	4110	4100	4090	4080	4060	4060	4030	4220	Additional efficiency	Finland
	2794	2699	2627	2556	2508	2436	2341	2269	2221	1744	Reference scenario	Slovakia
	1907	1885	1862	1839	1819	1798	1777	1756	1735	1526	Additional efficiency	Slovenia
	6027	5921	5814	5707	5556	5408	5259	5112	4856	4139	Reference scenario	Romania
	5996	5990	5986	5980	5992	6003	6016	6028	6040	6223	Reference scenario	Portugal
	18600	18400	18200	17900	17700	17500	17500	17000	16800	n.a.	Reference scenario	Poland
	9603	9407	9228	9055	8895	8739	8587	8453	8336	8945	Reference scenario	Austria
	10948	11105	11262	11419	11475	11531	11587	11643	11699	11351	Additional efficiency	Netherlands
	163	162	160	159	158	156	155	154	152	n.a.	Reference scenario	Malta
	5342	5228	5116	5005	4897	4744	4592	4405	4107	3964	Reference scenario	Hungary
	2529	2502	2475	2448	2420	2392	2365	2337	2309	2416	Reference scenario	Luxembourg
	1707	1654	1603	1554	1506	1461	1418	1376	1336	1133	Reference scenario	Lithuania
	1274	1253	1231	1212	1190	1165	1145	1119	1099	982	Reference scenario	Latvia
	806	795	783	771	757	744	733	722	721	682	Reference scenario	Cyprus
3	38436	38325	38174	37986	37759	37494	37190	36848	36467	39000	Reference scenario	Italy
5	56300	55900	55500	55100	54700	54300	53900	53500	53100	45080	Reference scenario	France
္သ	37380	36367	35382	34391	33460	32402	31433	30816	30891	32407	Reference scenario	Spain
	7094	7037	6945	6864	6828	6816	6779	6769	6774	6568	Reference scenario	Greece
	5706	5589	5464	5311	5043	4740	4578	4430	4605	3912	Reference scenario	Ireland
940	927	913	900	886	867	847	828	809	789	746	Reference scenario	Estonia
52	52073	52112	52150	52187	52221	52232	52268	52331	52427	53602	Reference scenario	Germany
	4445	4443	4436	4428	4411	4397	4397	4293	4207	4145	Reference scenario	Denmark
	6723	6577	6542	6506	6464	6389	6294	6169	6146	6007	Reference scenario	Czech Republic
	3372	3315	3252	3191	3110	3021	2928	2857	2830	2642	Reference scenario	Bulgaria
	9463	9530	9591	9661	9629	9589	9552	9522	9485	8493	Reference scenario	Belgium
[ktoe]												
	toro	li di	10.0	1000								

For the Netherlands, Slovenia and Finland the 'Reference scenario' is not available. For these Member States, projections have been taken as reported for the 'Additional efficiency scenario', see Table 52.

together amounting to 17.0 Mtoe). For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010

Table 52: Final energy consumption [ktoe] for transport for the additional energy efficiency scenario

2020	2 1 3	1 2 2 2 2 2	111133	3 0 5 1 1	20	100
2020 [ktoe]	874(2952 6618	433: 4830; 934 5747 6336	4210 3397, 768 1299	173- 233- 5345 5345 165	8414 19900 5743 5628 1953 2747 4080 4080	312352
2019 [ktoe]	8852 2941 6416	4342 48857 921 5658 6309	42800 34281 765 1278	1691 2309 5286 164 10791	8414 19500 5789 5789 1930 2675 4120 8068	313236
2018 [ktoe]	8963 2929 6436	4344 49414 908 5542 6279	43000 34589 761 1257	1648 2285 5223 163 10948	8407 19000 5836 5536 1907 2603 4150 8026	313613
2017 [ktoe]	9077 2914 6456	4353 50034 895 5430 6267	43400 34897 756 1237	1606 2260 5121 161 11105	8396 18600 5884 5485 1885 2532 4150 7983	314307
2016 [ktoe]	9187 2900 6443	4355 50655 881 5308 6279	43700 35205 750 1218	1566 2236 5020 11262	8383 18200 5932 5434 1862 2491 4110 7741	314802
2015 [ktoe]	9306 2898 6429	4353 51279 868 5152 6253	44000 35513 744 1199	1527 2211 4922 159 11419	8374 17800 5980 5379 1839 2449 4100 7000	315275
2014 [ktoe]	9308 2895 6407	4353 51575 852 4905 6214	44300 35821 736 1178	1484 2186 4825 11475	8364 17600 5992 5252 1819 2409 7856	315170
2013 [ktoe]	9304 2888 6342	4350 51806 837 4621 6233	44700 36129 727 1157	1444 2161 4685 156 11531	8336 17400 6003 5125 1798 2341 4080 71746	314801
2012 [ktoe]	9301 2872 6255	4361 52021 821 4482 6324 30746	45000 36437 720 1136	1405 2136 4544 155 11587	8348 17200 6016 4999 1777 2293 4060 7711	314194
2011 [ktoe]	9306 2846 6139	4267 52188 805 4358 6436	45300 36745 716 1116	1368 2111 4369 154 11643	8341 17000 6028 4873 1756 2245 4060 7728	313628
2010 [ktoe]	9304 2776 6128	4191 52355 789 4564 6528	45700 37054 720 1096	1333 2086 4083 152 11699	8336 16800 6040 4725 1735 2221 4030 7686	313491
2005 [ktoe]	8493 2642 6007	4145 53602 746 3912 6568	45080 39000 682 982	1133 2416 3964 n.a. 11351	8945 8945 11.4. 1744 4220 17473	299104
Scenario	Additional efficiency Additional efficiency Additional efficiency	Additional efficiency Additional efficiency Additional efficiency Additional efficiency Additional efficiency	Additional efficiency Additional efficiency Additional efficiency Additional efficiency	Additional efficiency Additional efficiency Additional efficiency Additional efficiency Additional efficiency	Additional efficiency	Additional efficiency
	Belgium Bulgaria Czech Republic	Denmark Germany Estonia Treland Greece	France Italy Cyprus Latvia	Lithuania Luxembourg Hungary Malta Netherlands	Austra Poland Portugal Romania Slovenia Slovakia Finland Finland	All Member States (total)

For the 'additional energy efficiency' scenario all Member States have provided data.

For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010) together amounting to 17.0 Mtoe).

Table 53: Total final energy consumption [ktoe] before aviation reduction for the reference scenario

	1316952	1306453	1297157	1286307	1276193	1265780	1254554	1243349	1232603	1221059	1212680	1165904	Mixed value	Mixed scenarios	All Member States (total)
=	149000	148800	148600	148400	148200	148300	148100	147700	147300	146800	146600	154500	Without reduction	Reference	Jnited Kingdom
w	44439	43778	43117	42455	41794	41132	40471	39810	39148	38487	37826	34519	Without reduction	Reference	Sweden
2	28170	28080	27910	27770	27600	27420	27140	26860	26610	26330	25730	26260	Without reduction	Additional efficiency	Finland
_	12443	12270	12098	11902	11731	11562	11417	11249	11058	10891	10653	10199	Without reduction	Reference	Slovakia
0	5323	5296	5269	5241	5214	5186	5135	5083	5031	4979	4927	5090	Without reduction	Additional efficiency	Slovenia
ယ	34374	33508	32797	32122	31438	30838	29716	28705	27766	26928	26261	27519	Without reduction	Reference	Romania
2	20082	19879	19680	19490	19293	19094	18989	18887	18782	18690	18592	19582	Without reduction	Reference	Portugal
6	82700	80700	78400	76400	74200	72000	69900	67800	66200	63400	61300	n.a.	Without reduction	Reference	Poland
2	30622	30043	29477	28922	28402	27893	27416	26948	26489	26083	25726	27610	Without reduction	Reference	Austria
4	52088	52010	51932	51854	51776	51698	51560	51422	51284	51146	51008	54010	Without reduction	Additional efficiency	Vetherlands
0	625	616	606	596	586	577	566	555	545	534	517	n.a.	Without reduction	Reference	Malta
2	20525	20493	20462	20412	20355	20288	20205	20167	19508	18986	18309	19909	Without reduction	Reference	lungary
0	5019	4967	4916	4864	4812	4760	4720	4680	4639	4599	4558	4605	Without reduction	Reference	Luxembourg
0	6296	6162	6029	5895	5797	5698	5555	5412	5273	5134	5034	4907	Without reduction	Reference	ithuania
0	5434	5300	5191	5101	4862	4615	4451	4325	4231	4141	4060	4241	Without reduction	Reference	Latvia
0	2380	2338	2293	2247	2199	2150	2096	2043	1991	1949	1921	1884	Without reduction	Reference	Cyprus
=	145566	144580	143570	142536	141480	140399	139295	138167	137016	135841	134643	141226	Without reduction	Reference	[taly
15	195745	193798	192252	190704	189157	187610	186064	184518	182970	181423	179877	166689	Without reduction	Reference	France
9	112530	110108	107739	105417	103150	100923	98743	96613	94635	93169	93379	101845	Without reduction	Reference	Spain
2	25262	24826	24377	24007	23539	23150	22860	22670	22516	22424	22714	21649	Without reduction	Reference	Greece
_	15367	15166	14939	14707	14469	14181	13732	13285	13020	12855	13127	12807	Without reduction	Reference	Ireland
0	3602	3562	3522	3481	3440	3419	3377	3336	3294	3252	3210	3098	Without reduction	Reference	Estonia
16	211599	213122	214723	216347	218019	218926	220120	221243	222485	223249	223767	229092	Without reduction	Reference	Jermany
_	17984	17861	17740	17648	17553	17453	17324	17168	17011	16738	16495	16475	Without reduction	Reference	Denmark
3	34128	33794	33585	32937	32589	32265	31870	31523	31193	30924	30623	29665	Without reduction	Reference	Czech Republic
_	13263	13075	12878	12663	12419	12186	11880	11542	11182	10885	10811	10314	Without reduction	Reference	Bulgaria
s.	42386	42321	43055	42189	42119	42057	41852	41638	41426	41222	41012	38209	Without reduction	Reference	Belgium
[%]	[ktoe]														
101	toto	tory	toro	l C	toro	10.0	to	1000	1000	to	l o c	1000			

For the Netherlands, Slovenia and Finland the 'Reference scenario' is not available. For these Member States, projections have been taken as reported for the 'Additional efficiency scenario', see

together amounting to 61.8 Mtoe). For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010

Table 54: Total final energy consumption [ktoe] before aviation reduction for the additional energy efficiency scenario

9		7 7	6					3	6						
	Scenario	Aviation reduction	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020
			[ktoe]	[%]											
Belgium	Additional efficiency	Without reduction	38209	40517	40630	40736	41121	40967	41076	41116	41164	41207	41254	41301	3
Bulgaria	Additional efficiency	Without reduction	10314	10398	10423	10516	10578	10608	10608	10557	10626	10688	10711	10738	-
Czech Republic	Additional efficiency	Without reduction	29665	53666	30186	30350	30568	30796	31089	31333	31587	32018	32275	32531	3
Denmark	Additional efficiency	Without reduction	16475	16324	16432	16576	16600	16629	16596	16553	16510	16458	16438	16419	-
Germany	Additional efficiency	Without reduction	229092	223584	222461	220479	218234	215869	213122	210089	206984	203760	200463	197178	17
Estonia	Additional efficiency	Without reduction	3098	3190	3218	3246	3273	3301	3329	3338	3366	3395	3423	3451	0
Ireland	Additional efficiency	Without reduction	12807	13024	12633	12700	12867	13220	13575	13784	13887	13984	14076	14142	-
Greece	Additional efficiency	Without reduction	21649	22418	21964	21864	21917	21960	22251	22596	22903	23216	23614	24114	2
Spain	Additional efficiency	Without reduction	101845	93226	92503	92974	93634	94116	94593	95078	95562	96055	96544	97041	∞
France	Additional efficiency	Without reduction	166689	164349	163400	162553	161704	160758	159909	159060	158213	157264	156517	155268	13
Italy	Additional efficiency	Without reduction	141226	131801	131925	132049	132174	132298	132422	132546	132670	132794	132918	133042	11
Cyprus	Additional efficiency	Without reduction	1884	1919	1934	1963	2002	2041	2080	2116	2149	2180	2210	2240	0
Latvia	Additional efficiency	Without reduction	4241	4033	4101	4170	4240	4311	4383	4462	4542	4624	4709	4796	0
Lithuania	Additional efficiency	Without reduction	4907	5031	5111	5229	5347	5479	5610	5692	5773	5877	2980	6084	-
Luxembourg	Additional efficiency	Without reduction	4605	4273	4296	4318	4341	4364	4386	4415	4444	4472	4501	4530	0
Hungary	Additional efficiency	Without reduction	19909	18255	18878	19418	19849	19792	19782	19746	19728	19712	19677	19644	2
Malta	Additional efficiency	Without reduction	n.a.	206	522	532	542	551	561	570	578	587	595	603	0
Netherlands	Additional efficiency	Without reduction	54010	51008	51146	51284	51422	51560	51698	51776	51854	51932	52010	52088	4
Austria	Additional efficiency	Without reduction	27610	25726	25775	25836	25910	26001	26113	26248	26412	26608	26839	27109	2
Poland	Additional efficiency	Without reduction	n.a.	61300	61800	62400	62900	63400	64000	00059	00199	67100	68200	69200	9
Portugal	Additional efficiency	Without reduction	19582	18592	18690	18782	18887	18989	19094	19175	19252	19318	19392	19467	2
Romania	Additional efficiency	Without reduction	27519	25863	26439	26956	27493	28030	28606	28932	29278	29607	29949	30278	3
Slovenia	Additional efficiency	Without reduction	2090	4927	4979	5031	5083	5135	5186	5214	5241	5269	5296	5323	0
Slovakia	Additional efficiency	Without reduction	10199	10653	10724	10755	10786	10838	10862	10888	10938	11018	11100	11226	1
Finland	Additional efficiency	Without reduction	26260	25730	26330	26610	26860	27140	27420	27600	27770	27910	28080	28170	2
Sweden	Additional efficiency	Without reduction	34519	36089	36404	36718	37032	37346	37660	37974	38288	38603	38917	39231	33
United Kingdom	Additional efficiency	Without reduction	154500	146500	146200	146200	146100	145900	145600	145100	144800	144600	144300	144100	12
All Member States (total)	Additional efficiency	Without reduction	1165904	1189205	1189104	1190245	1191464	1191399	1191611	1190958	1190619	1190256	1189988	1189314	100

For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010 This dataset presents gross final energy consumption. It is the only cross-section of the NREAP data that is complete, so in this table no corrections have been applied (see also the footnotes in Tables 53, 55 and 56).

together amounting to 61.8 Mtoe).

Table 55: Total final energy consumption [ktoe] after aviation reduction for the reference scenario

1	1307423	1297426	1288647	1278306	1268796	1258962	1248271	1237444	1227077	1215808	1207782	1161574	Mixed value	Mixed scenarios	All Member States (total)
1	142000	142100	142200	142300	142500	143000	143200	143100	143000	142700	142800	150900	After reduction	Reference	United Kingdom
	44439	43778	43117	42455	41794	41132	40471	39810	39148	38487	37826	34519	Without reduction	Reference	Sweden
	28170	28080	27910	27770	27600	27420	27140	26860	26610	26330	25730	26260	Without reduction	Additional efficiency	Finland
	12443	12270	12098	11902	11731	11562	11417	11249	11058	10891	10653	10199	Without reduction	Reference	Slovakia
_	5323	5296	5269	5241	5214	5186	5135	5083	5031	4979	4927	5090	Without reduction	Additional efficiency	Slovenia
	34374	33508	32797	32122	31438	30838	29716	28705	27766	26928	26261	27519	Without reduction	Reference	Romania
b 3	20082	19879	19680	19490	19293	19094	18989	18887	18782	18690	18592	19582	Without reduction	Reference	Portugal
6	82700	80700	78400	76400	74200	72000	69900	67800	66200	63400	61300	n.a.	Without reduction	Reference	Poland
	30622	30043	29477	28922	28402	27893	27416	26948	26489	26083	25726	27610	Without reduction	Reference	Austria
	50532	50536	50541	50545	50550	50554	50491	50428	50366	50303	50240	53717	After reduction	Additional efficiency	Netherlands
_	625	616	606	596	586	577	566	555	545	534	517	n.a.	Without reduction	Reference	Malta
h.	20525	20493	20462	20412	20355	20288	20205	20167	19508	18986	18309	19909	Without reduction	Reference	Hungary
_	4915	4860	4805	4750	4696	4641	4598	4555	4512	4469	4426	4457	After reduction	Reference	Luxembourg
_	6296	6162	6029	5895	5797	5698	5555	5412	5273	5134	5034	4907	Without reduction	Reference	Lithuania
_	5434	5300	5191	5101	4862	4615	4451	4325	4231	4141	4060	4241	Without reduction	Reference	Latvia
_	2159	2121	2081	2039	1996	1952	1904	1857	1810	1771	1744	1661	After reduction	Reference	Cyprus
	145566	144580	143570	142536	141480	140399	139295	138167	137016	135841	134643	141226	Without reduction	Reference	Italy
1:	195745	193798	192252	190704	189157	187610	186064	184518	182970	181423	179877	166689	Without reduction	Reference	France
	111882	109579	107343	105147	102998	100866	98743	96613	94635	93169	93379	101845	After reduction	Reference	Spain
	25262	24826	24377	24007	23539	23150	22860	22670	22516	22424	22714	21649	Without reduction	Reference	Greece
	15367	15166	14939	14707	14469	14181	13732	13285	13020	12855	13106	12741	After reduction	Reference	Ireland
	3602	3562	3522	3481	3440	3419	3377	3336	3294	3252	3210	3098	Without reduction	Reference	Estonia
_	211599	213122	214723	216347	218019	218926	220120	221243	222485	223249	223767	229092	Without reduction	Reference	Germany
	17984	17861	17740	17648	17553	17453	17324	17168	17011	16738	16495	16475	After reduction	Reference	Denmark
	34128	33794	33585	32937	32589	32265	31870	31523	31193	30924	30623	29665	Without reduction	Reference	Czech Republic
	13263	13075	12878	12663	12419	12186	11880	11542	11182	10885	10811	10314	Without reduction	Reference	Bulgaria
	42386	42321	43055	42189	42119	42057	41852	41638	41426	41222	41012	38209	Without reduction	Reference	Belgium
[%]	[ktoe]														
707	2404	7010	1010	1017	10000	1000	100	10.00	1000	1000	1000				

Bulgaria, the Czech Republic, Germany, Estonia, Greece, France, Italy, Latvia, Lithuania, Hungary, Malta, Austria, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, . See also the 2015 - 2020), Cyprus, Luxembourg, the Netherlands, and the United Kingdom. For the remaining countries, the values before the aviation reduction have been displayed. This regards Belgium, For the Netherlands, Slovenia and Finland the 'Reference scenario' is not available. For these Member States, projections have been taken as reported for the 'Additional efficiency scenario', see

Not for all Member States the aviation reduction has been applied. This table presents all data for the total consumption after reduction for aviation limit for Denmark, Ireland, Spain (only for

Tables 54 (Slovenia and Finland) and 56 (the Netherlands)

together amounting to 61.8 Mtoe For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010

For Spain the aviation reduction only applies to the years 2015 – 2020 in the 'Reference scenario'

Table 56: Total final energy consumption [ktoe] after aviation reduction for the additional energy efficiency

	Scenario	Aviation reduction	2005	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020
			[ktoe]	[%]											
Belgium	Additional efficiency	Without reduction	38209	40517	40630	40736	41121	40967	41076	41116	41164	41207	41254	41301	4
Bulgaria	Additional efficiency	Without reduction	10314	10398	10423	10516	10578	10608	10608	10557	10626	10688	10711	10738	_
Czech Republic	Additional efficiency	Without reduction	29665	59969	30186	30350	30568	30796	31089	31333	31587	32018	32275	32531	8
Denmark	Additional efficiency	After reduction	16475	16324	16432	16576	16600	16629	16596	16553	16510	16443	16395	16346	-
Germany	Additional efficiency	Without reduction	229092	223584	222461	220479	218234	215869	213122	210089	206984	203760	200463	197178	17
Estonia	Additional efficiency	Without reduction	3098	3190	3218	3246	3273	3301	3329	3338	3366	3395	3423	3451	0
Ireland	Additional efficiency	After reduction	12741	12996	12633	12700	12867	13220	13575	13784	13887	13984	14076	14142	-
Greece	Additional efficiency	Without reduction	21649	22418	21964	21864	21917	21960	22251	22596	22903	23216	23614	24114	2
Spain	Additional efficiency	Without reduction	101845	93226	92503	92974	93634	94116	94593	92078	95562	96055	96544	97041	∞
France	Additional efficiency	Without reduction	166689	164349	163400	162553	161704	160758	159909	159060	158213	157264	156517	155268	13
Italy	Additional efficiency	Without reduction	141226	131801	131925	132049	132174	132298	132422	132546	132670	132794	132918	133042	11
Cyprus	Additional efficiency	After reduction	1991	1742	1757	1782	1816	1850	1884	1915	1943	1971	1997	2023	0
Latvia	Additional efficiency	Without reduction	4241	4033	4101	4170	4240	4311	4383	4462	4542	4624	4709	4796	0
Lithuania	Additional efficiency	Without reduction	4907	5031	5111	5229	5347	5479	5610	5692	5773	5877	2980	6084	-
Luxembourg	Additional efficiency	After reduction	4457	4123	4147	4171	4195	4219	4243	4274	4304	4335	4365	4396	0
Hungary	Additional efficiency	Without reduction	19909	18255	18878	19418	19849	19792	19782	19746	19728	19712	19677	19644	2
Malta	Additional efficiency	After reduction	n.a.	434	450	460	470	480	490	499	207	517	526	534	0
Netherlands	Additional efficiency	After reduction	53717	50240	50303	50366	50428	50491	50554	50550	50545	50541	50536	50532	4
Austria	Additional efficiency	Without reduction	27610	25726	25775	25836	25910	26001	26113	26248	26412	26608	26839	27109	2
Poland	Additional efficiency	Without reduction	n.a.	61300	61800	62400	62900	63400	64000	00059	00199	67100	68200	69200	9
Portugal	Additional efficiency	Without reduction	19582	18592	18690	18782	18887	18989	19094	19175	19252	19318	19392	19467	2
Romania	Additional efficiency	Without reduction	27519	25863	26439	26956	27493	28030	28606	28932	29278	29607	29949	30278	3
Slovenia	Additional efficiency	Without reduction	2090	4927	4979	5031	5083	5135	5186	5214	5241	5269	5296	5323	0
Slovakia	Additional efficiency	Without reduction	10199	10653	10724	10755	10786	10838	10862	10888	10938	11018	11100	11226	-
Finland	Additional efficiency	Without reduction	26260	25730	26330	26610	26860	27140	27420	27600	27770	27910	28080	28170	2
Sweden	Additional efficiency	Without reduction	34519	36089	36404	36718	37032	37346	37660	37974	38288	38603	38917	39231	8
United Kingdom	Additional efficiency	After reduction	150900	142700	142100	141800	141400	140800	140200	139200	138500	137900	137300	136700	12
All Member States (total)	Additional efficiency	Mixed value	1161574	1184210	1183763	1184527	1185366	1184823	1184657	1183419	1182593	1181734	1181053	1179865	100

For Malta and Poland no data are available for the year 2005. Consequently, the value reported here as EU total in 2005 is actually the value for the EU minus Malta and Poland (in the year 2010) Not for all Member States the aviation reduction has been applied. This table presents all data for the total consumption after reduction for aviation limit for Denmark, Ireland, Cyprus, Luxembourg, Malta, the Netherlands and the United Kingdom. For the remaining countries, the values before the aviation reduction have been displayed. This regards Belgium, Bulgaria, the Czech Republic, Germany, Estonia, Greece, Spain, France, Italy, Latvia, Lithuania, Hungary, Austria, Poland, Portugal, Romania, Slovenia, Slovakia, Finland and Sweden. See also the third column in the table. Specific Cyprus and Malta the value for 'total final energy consumption after aviation after aviation reduction' might be an underestimate, see Sections 1.5.12 on page 35 and 1.5.17 on page 36 together amounting to 61.7 Mtoe).

Renewable aggregate data as reported in NREAP

Table 57: Aggregate RES according to NREAP for the year 2005 (Template Table 4a, Table 4b (RES-T for target) and Table 12 (RES-E in road vehicles)

	$RES-E^a$ [ktoe]	RES-H/ C^a [ktoe]	$ ext{RES-T}^a$ [ktoe]	All RES ^a [ktoe]	All RES b [%]	RES-T target ^c [ktoe]	RES-E,H/C, T^d [ktoe]	Difference e [ktoe]	RES-E f in transport [ktoe]	$\begin{array}{c} RES\ export^a \\ [ktoe] \end{array}$	RES import a [ktoe]	RES ^a after exchange [ktoe]	Page
Belgium	212	491	16	702	0.7	16	719	-17	16	0	0	702	209
Bulgaria	264	724	3	991	1.0	0	991	0	3	0	0	991	211
Czech Republic	269	1482	9	1760	1.8	9	1760	0	6	0	0	1760	213
Denmark	850	1869	9	2718	2.8	9	2728	-10	9	0	0	2718	215
Germany	5301	7706	2087	14926	15.1	2087	15094	-168	169	0	0	14926	217
Estonia	9	505	0	515	0.5	n.a.	514	1	0	n.a.	0	515	219
Ireland	180	193	1	373	0.4	1	374	-1	1	0	0	373	221
Greece	440	1066	1	1507	1.5	1	1507	0	n.a.	n.a.	n.a.	1507	223
Spain	4624	3550	366	8433	8.5	366	8540	-107	108	n.a.	n.a.	8433	225
France	6118	9397	544	15918	16.1	544	16059	-141	141	0	0	15918	227
Italy	4847	1916	179	6942	7.0	338	6942	0	139	n.a.	n.a.	6942	229
Cyprus	0	48	0	48	0.0	0	48	0	0	0	0	48	231
Latvia	261	1114	7	1377	1.4	9	1382	-5	4	n.a.	n.a.	1377	233
Lithuania	38	688	4	730	0.7	4	730	0	0	0	0	730	235
Luxembourg	18	20	2	40	0.0	2	40	0	1	n.a.	n.a.	40	237
Hungary	n.a.	n.a.	n.a.	n.a.	n.a.	5	n.a.	n.a.	0	n.a.	n.a.	n.a.	239
Malta	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	241
Netherlands	622	717	8	1339	1.4	8	1347	-8	8	0	0	1339	243
Austria	3480	3213	205	6735	6.8	214	6898	-163	162	0	0	6735	245
Poland	n.a.	n.a.	n.a.	n.a.	n.a.	43	n.a.	n.a.	0	n.a.	n.a.	n.a.	247
Portugal	1337	2529	12	3866	3.9	12	3878	-12	12	0	0	3866	249
Romania	1347	3516	58	4921	5.0	58	4921	0	41	0	0	4921	251
Slovenia	362	465	0	828	0.8	4	827	1	4	0	0	828	253
Slovakia	404	361	∞	772	0.8	8	773	-1	&	n.a.	n.a.	772	255
Finland	2030	5530	0	7560	7.7	20	7560	0	20	0	0	7560	257
Sweden	6605	7084	288	13689	13.9	301	13977	-288	121	n.a.	n.a.	13689	259
United Kingdom	1506	475	69	2050	2.1	69	2050	0	113	n.a.	n.a.	2050	261
European Union	41124	54659	3876	98740	100.0	4128	99659	-919	1086	0	0	98740	•

^a As reported in Template Table 4a. The Template is available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

^b Calculated indicator: contribution of each Member State to 'All RES' as reported in Table 4a.

4b has been considered)

by electric road vehicles) and Article 21.2 (considering twice the contribution made by biofuels produced from wastes, residues, non-food cellulosic material and ligno-cellulosic material).

d Calculated result: sum of columns 'RES-E', 'RES-H/C' and 'RES-T' as reported in Template Table 4a. ^c 'RES-T target' refers to the row indicated (J) in Template Table 4b and takes into account Article 4c of the Directive (applying a factor 2.5 to electricity from renewable energy sources consumed

^e Difference between column 'All RES' and the sum of columns 'RES-E', 'RES-H/C' and 'RES-T' as reported in Template Table 4a (see also footnote d). Since none of the 27 Member States projected a contribution from renewable hydrogen in transport, the difference should be equal to the projection for renewable electricity in transport (Article 5.1 of the Renewable Energy Directive 2009/28/EC, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT) Renewable electricity in transport ('road transport' and 'non-road transport') as reported in Template Table 12 (for Romania only 'renewable electricity in road transport' from Template Table

Table 58: Aggregate RES according to NREAP for the year 2010 (Template Table 4a, Table 4b (RES-T for target) and Table 12 (RES-E in road vehicles)

	RES-Ea	RES-H/Ca	RES-Ta	All RESa	All RES ^b	RES-T target ^c	RES-E.H/C.T ^d	Difference	RES-Ef in	RES export ^a	RES import ^a	RES ^a after	Page
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]	[ktoe]	[ktoe]	[ktoe]	transport [ktoe]	[ktoe]	[ktoe]	exchange [ktoe]	,
Belgium	401	992	353	1520	1.1	353	1520	0	24	0	0	1520	209
Bulgaria	330	741	36	1107	0.8	30	1107	0	3	61	0	1046	211
Czech Republic	445	1811	250	2506	1.8	250	2506	0	7	0	0	2506	213
Denmark	1067	2480	42	3578	2.6	42	3589	-11	11	0	0	3578	215
Germany	9026	10031	3749	22588	16.5	3847	22806	-218	219	0	0	22588	217
Estonia	53	612	1	999	0.5	n.a.	999	0	0	n.a.	0	999	219
Ireland	504	220	135	859	9.0	138	859	0	1	0	0	829	221
Greece	674	1269	110	2050	1.5	111	2053	-3	2	257	n.a.	1793	223
Spain	7227	3764	1802	12693	9.3	1852	12793	-100	66	n.a.	n.a.	12693	225
France	7073	11124	2898	20912	15.3	2948	21095	-183	183	0	0	20912	227
Italy	5744	3851	1020	10615	7.7	1295	10615	0	170	n.a.	n.a.	10615	229
Cyprus	20	78	16	114	0.1	16.15	114	0	0	0	0	114	231
Latvia	261	1020	42	1320	1.0	44	1323	-3	3	n.a.	n.a.	1320	233
Lithuania	74	999	55	795	9.0	55	795	0	0	0	0	795	235
Luxempourg	22	26	43	68	0.1	43	91	-2	2	0	0	68	237
Hungary	244	949	150	1344	1.0	177	1343	1	9	0	0	1344	239
Malta	1.3	3.5	æ	7.8	0.0	4.2	7.8	0	0	n.a.	n.a.	7.8	241
Netherlands	915	906	319	2128	1.6	475	2140	-12	12	0	0	2128	243
Austria	3902	3657	564	7952	5.8	564	8123	-171	171	0	0	7952	245
Poland	913	3980	981	5873	4.3	971	5874	-1	15	0	0	5873	247
Portugal	1956	2240	301	4476	3.3	305	4497	-21	20	0	0	4476	249
Romania	1435	2819	275	4529	3.3	275	4529	0	36	0	0	4529	251
Slovenia	388	445	40	874	9.0	46	873	1	5	0	0	874	253
Slovakia	471	452	06	1013	0.7	06	1013	0	∞	n.a.	0	1013	255
Finland	1950	5210	220	7380	5.4	230	7380	0	20	0	0	7380	257
Sweden	7189	8237	528	15695	11.5	573	15954	-259	147	n.a.	n.a.	15695	259
United Kingdom	2720	518	1066	4304	3.1	1066	4304	0	136	n.a.	n.a.	4304	261
European Union	55005.3	67875.5	15089	136987.8	100.0	15800.35	137969.8	-982	1301	318	0	136669.8	•

a As reported in Template Table 4a. The Template is available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT.

Calculated indicator: contribution of each Member State to 'All RES' as reported in Table 4a.

^e Difference between column 'All RES' and the sum of columns 'RES-E', 'RES-H/C' and 'RES-T' as reported in Template Table 4a (see also footnote d). Since none of the 27 Member States projected a contribution from renewable hydrogen in transport, the difference should be equal to the projection for renewable electricity in transport (Article 5.1 of the Renewable Energy Directive 2009/28/EC, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT)

Renewable electricity in transport ('road transport' and 'non-road transport') as reported in Template Table 12 (for Romania only 'renewable electricity in road transport' from Template Table 4b has been considered).

^{° &#}x27;RES-T target' refers to the row indicated (J) in Template Table 4b and takes into account Article 4c of the Directive (applying a factor 2.5 to electricity from renewable energy sources consumed by electric road vehicles) and Article 21.2 (considering twice the contribution made by biofuels produced from wastes, residues, non-food cellulosic material and ligno-cellulosic material). ^d Calculated result: sum of columns 'RES-E', 'RES-H/C' and 'RES-T' as reported in Template Table 4a.

Table 59: Aggregate RES according to NREAP for the year 2015 (Template Table 4a, Table 4b (RES-T for target) and Table 12 (RES-E in road vehicles)

	$RES-E^a$ [ktoe]	RES-H/ C^a [ktoe]	$RES-T^a$ [ktoe]	All RES ^a [ktoe]	All RES b [%]	RES-T target ^c [ktoe]	RES-E,H/C, T^d [ktoe]	$\begin{array}{c} {\rm Difference}^e \\ {\rm [ktoe]} \end{array}$	RES-E f in transport [ktoe]	RES export a [ktoe]	RES import a [ktoe]	RES ^a after exchange [ktoe]	Page
Belgium	1121	1435	541	3096	1.7	544	3097	-1	47	0	0	3096	209
Bulgaria	590	943	166	1699	0.9	115	1699	0	7	386	0	1313	211
Czech Republic	864	2359	455	3677	2.0	455	3678	-1	16	0	0	3677	213
Denmark	1477	2855	266	4579	2.5	292	4598	-19	19	833	0	3746	215
Germany	13553	12163	3479	28822	15.9	3613	29195	-373	374	0	0	28822	217
Estonia	117	626	42	786	0.4	n.a.	785	1	0	81	0	704	219
Ireland	855	451	300	1605	0.9	304	1606	-1	1	211	0	1394	221
Greece	1459	1548	393	3393	1.9	395	3400	-7	7	856	n.a.	2537	223
Spain	9545	4404	2695	16419	9.1	2902	16644	-225	224	n.a.	n.a.	16419	225
France	9407	15040	3215	27402	15.1	3372	27662	-260	260	0	0	27402	227
Italy	7045	6062	1775	14882	8.2	2356	14882	0	265	n.a.	n.a.	14882	229
Cyprus	46	101	23	170	0.1	24.55	170	0	0	0	0	170	231
Latvia	332	1179	53	1560	0.9	56	1564	-4	5	n.a.	n.a.	1560	233
Lithuania	182	849	111	1142	0.6	113	1142	0	2	0	0	1142	235
Luxembourg	49	57	84	186	0.1	85	190	-4	4	0	45	231	237
Hungary	333	1049	266	1648	0.9	310	1648	0	15	0	0	1648	239
Malta	17.1	4.9	5.1	27.1	0.0	6.7	27.1	0	0	n.a.	n.a.	27.1	241
Netherlands	2360	1380	591	4307	2.4	685	4331	-24	23	0	0	4307	243
Austria	4144	3808	631	8392	4.6	656	8583	-191	191	0	0	8392	245
Poland	1709	4532	1376	7617	4.2	1444	7617	0	23	0	0	7617	247
Portugal	2531	2462	466	5421	3.0	479	5459	-38	37	0	0	5421	249
Romania	2333	3000	436	5769	3.2	436	5769	0	45	0	0	5769	251
Slovenia	458	561	79	1099	0.6	86	1098	1	7	0	0	1099	253
Slovakia	617	627	147	1391	0.8	147	1391	0	10	305	0	1086	255
Finland	2200	6340	410	8950	4.9	510	8950	0	20	0	0	8950	257
Sweden	7772	9390	768	17702	9.8	844	17930	-228	173	n.a.	n.a.	17702	259
United Kingdom	5189	1537	2581	9307	5.1	2587	9307	0	192	n.a.	n.a.	9307	261
European Union	76305.1	84762.9	21354.1	181048.1	100.0	22817.25	182422.1	-1374	1968	2672	45	178420.1	

^a As reported in Template Table 4a. The Template is available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT

Calculated indicator: contribution of each Member State to 'All RES' as reported in Table 4a.
 'RES-T target' refers to the row indicated (J) in Template Table 4b and takes into account Articles

^e Difference between column 'All RES' and the sum of columns 'RES-E', 'RES-H/C' and 'RES-T' as reported in Template Table 4a (see also footnote d). Since none of the 27 Member States projected a contribution from renewable hydrogen in transport, the difference should be equal to the projection for renewable electricity in transport (Article 5.1 of the Renewable Energy Directive 2009/28/EC, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT)

4b has been considered) Renewable electricity in transport ('road transport' and 'non-road transport') as reported in Template Table 12 (for Romania only 'renewable electricity in road transport' from Template Table

by electric road vehicles) and Article 21.2 (considering twice the contribution made by biofuels produced from wastes, residues, non-food cellulosic material and ligno-cellulosic material).

d Calculated result: sum of columns 'RES-E', 'RES-H/C' and 'RES-T' as reported in Template Table 4a. ^c 'RES-T target' refers to the row indicated (J) in Template Table 4b and takes into account Article 4c of the Directive (applying a factor 2.5 to electricity from renewable energy sources consumed

Table 60: Aggregate RES according to NREAP for the year 2020 (Template Table 4a, Table 4b (RES-T for target) and Table 12 (RES-E in road vehicles)

	$RES-E^a$	RES-H/Ca	$RES-T^a$	All RES ^a	All RES ^b	RES-T target ^c	RES-E.H/C.T ^d	Difference ^e	RES-E ^f in	RES export ^a	RES import ^a	RES ^a after	Page
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]	[ktoe]	[ktoe]	[ktoe]	transport [ktoe]	[ktoe]	[ktoe]	exchange [ktoe]	D
Belgium	1988	2588	798	5374	2.2	988	5374	0	76	0	0	5374	209
Bulgaria	654	1103	302	2059	0.8	204	2059	0	15	341	0	1718	211
Czech Republic	1038	2672	691	4383	1.8	169	4401	-18	19	0	0	4383	213
Denmark	1685	3042	291	4989	2.0	439	5018	-29	29	63	0	4926	215
Germany	18653	14431	6140	38557	15.8	6390	39224	<i>L</i> 99-	<i>L</i> 99	0	0	38557	217
Estonia	165	209	92	863	0.4	n.a.	864	-1	1	0	0	863	219
Ireland	1196	591	482	2269	6.0	575	2269	0	37	0	0	2269	22 I
Greece	2345	1908	634	4870	2.0	641	4887	-17	16.5	529	n.a.	4341	223
Spain	12903	5654	3885	22057	9.0	4322	22442	-385	381	n.a.	n.a.	22057	225
France	12729	19732	4062	36121	14.8	4427	36523	-402	402	0	0	36121	227
Italy	8504	10456	2530	21490	8.8	3445	21490	0	369	n.a.	1127	22617	229
Cyprus	101	124	38	263	0.1	77.12	263	0	0.56	0	0	263	231
Latvia	446	1395	83	1918	0.8	130	1924	9-	9	n.a.	n.a.	1918	233
Lithuania	254	1051	169	1474	9.0	173	1474	0	2.5	0	0	1474	235
Luxembourg	29	108	226	391	0.2	234	401	-10	10	0	93	484	237
Hungary	481	1863	535	2879	1.2	298	2879	0	24	0	0	2879	239
Malta	37.2	4.5	12.8	54.5	0.0	17.7	54.5	0	0.7	n.a.	n.a.	54.5	241
Netherlands	4326	2179	905	7340	3.0	1097	7410	-70	71	0	0	7340	243
Austria	4503	4179	856	9266	3.8	926	9538	-272	272	0	0	9266	245
Poland	2786	5921	2018	10725	4.4	2194	10725	0	50	0	0	10725	247
Portugal	3060	2507	535	6044	2.5	574	6102	-58	58	0	0	6044	249
Romania	2666	4038	564	7268	3.0	564	7268	0	52.7	0	0	7268	251
Slovenia	527	625	192	1344	0.5	204	1344	0	11	0	0	1344	253
Slovakia	889	820	207	1715	0.7	275	1715	0	17	143	0	1572	255
Finland	2870	7270	260	10700	4.4	800	10700	0	40	0	0	10700	257
Sweden	8356	10543	1008	19709	8.1	1116	19907	-198	198	n.a.	n.a.	19709	259
United Kingdom	10059	6199	4251	20510	8.4	4295	20509	1	267	n.a.	n.a.	20510	761
European Union	103087.2	111610.5	32066.8	244632.5	100.0	35344.82	246764.5	-2132	3114	1076	1220	244776.5	'

a As reported in Template Table 4a. The Template is available from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT.

Calculated indicator: contribution of each Member State to 'All RES' as reported in Table 4a.

^e Difference between column 'All RES' and the sum of columns 'RES-E', 'RES-H/C' and 'RES-T' as reported in Template Table 4a (see also footnote d). Since none of the 27 Member States projected a contribution from renewable hydrogen in transport, the difference should be equal to the projection for renewable electricity in transport (Article 5.1 of the Renewable Energy Directive 2009/28/EC, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009L0028:EN:NOT)

Renewable electricity in transport ('road transport' and 'non-road transport') as reported in Template Table 12 (for Romania only 'renewable electricity in road transport' from Template Table 4b has been considered).

^{° &#}x27;RES-T target' refers to the row indicated (J) in Template Table 4b and takes into account Article 4c of the Directive (applying a factor 2.5 to electricity from renewable energy sources consumed by electric road vehicles) and Article 21.2 (considering twice the contribution made by biofuels produced from wastes, residues, non-food cellulosic material and ligno-cellulosic material). ^d Calculated result: sum of columns 'RES-E', 'RES-H/C' and 'RES-T' as reported in Template Table 4a.

Biomass supply

Table 61: Biomass supply from forestry (total) for the years 2006 (including import and export), 2015 and 2020

					•		The second second	1	mporte (non 20)	(The second second second								
,	2006		2015		2020		2006	0,	2006	8	2	2006	2006		2006	6	2015	5		
Belgium	1166.68	kī	1892.78	kt	2227.631	kī	904.58	kt	49.48	kt	0	kt	2120.31	Kt	818.07	ktoe	732.03	ktoe	868.59	ktoe
Bulgaria	2527513	-	2725	kt	2951	kt	0		0	-	99888	t	2427625	-	759	ktoe	860	ktoe	930	ktoe
Czech Republic	5867	⊞3	9257	83	9901	В3	55	п3	0	m ₃	517	m ₃	5406	В3	1536	ktoe	2529	ktoe	2716	ktoe
Denmark	3489000	ton	8265000	ton	8642000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	5326000	ton	922	ktoe	1006	ktoe
Germany	45313000	В3	58832500	В3	57621000	В3	1840000	В3	n.a.	В3	n.a.		47153000	83	9792	ktoe	12217.5	ktoe	11966	ktoe
Estonia	3615000	В3	n.a.	В3	n.a.	В3	1000	В3	2000	В3	85000		n.a.	В3	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Ireland	1303374	ш3	1093000	В3	1667	ш3	2182	m ₃	1089	ш3	0		1305556	m ₃	n.a.	ktoe	169.81	ktoe	258	ktoe
Greece	3225559	m ₃	933333	ш3	933333	m ₃	0	m ₃	0	m ₃	0	m3	3225559	m3	729	ktoe	164	ktoe	164	ktoe
Spain	10018750	ton	11923266	ton	13997093	ton	n.a.	ton	n.a.	ton	n.a.		10018750	ton	2800	ktoe	3261	ktoe	3783	ktoe
France	59778254	В3	71100000	ВЗ	79370000	пз	1656455	п3	174342	пз	2503601		59105450	пз	11029	ktoe	13455	ktoe	15229	ktoe
Italy	n.a.	В3	4000000	ВЗ	10000000	пз	n.a.	п3	n.a.	пз	n.a.	m ₃	n.a.	пз	n.a.	ktoe	1600	ktoe	4000	ktoe
Cyprus	16347	ton	n.a.	ton	n.a.	ton	8608	ton	n.a.	ton	n.a.	ton	24928	ton	9	ktoe	5.05	ktoe	5.05	ktoe
Latvia	2058	т3	n.a.	пз	n.a.	т3	116.4	пз	n.a.	m ₃	3325.4	m ₃	5499.8	пз	3849.86	ktoe	n.a.	ktoe	n.a.	ktoe
Lithuania	3824	m3	3490000	m ₃	3122000	m ₃	228	m3	96	m3	430/4	m ³	3714	m3	728	ktoe	684	ktoe	612	ktoe
Luxembourg	274500	В3	59000	В3	85000	В3	n.a.	В3	n.a.	т3	151800	В3	132000	В3	22.6	ktoe	49	ktoe	107	ktoe
Hungary	3328000	В3	3500000	В3	3800000	В3	100000	В3	100000	В3	100000	В3	3428000	В3	24.73	PJ/year		PJ/year	27.46	PJ/year
Malta	0	В3	n.a.	ВЗ	n.a.	В3	0	п	0	m ₃	0	m ₃	n.a.	пз	0	ktoe	n.a.	ktoe	n.a.	ktoe
Netherlands	2910	ktns	1683^{a}	ktns	2605^{b}	ktns	690	ktns	235	ktns	1463	ktns	2088	ktns	462	ktoe	376°	ktoe	558^d	ktoe
Austria	16400000	ktoe	19500000	ktoe	21000000	ktoe	4170000	ktoe	n.a.	ktoe	50000	ktoe	20520000	ktoe	3725	ktoe	3588	ktoe	3870	ktoe
Poland	12493	ш3	11983	Mg	12456	Mg	n.a.	m ₃	n.a.	m ₃	n.a.	m3	12493	ВЗ	4173	ktoe	2002	ktoe	2081	ktoe
Portugal	0	ton	10878000	ton	10684000	ton	0	ton	0	ton	0	ton	0	ton	2731	ktoe	2946	ktoe	2894	ktoe
Romania	5500000	В3	6500000	В3	7500000	В3	0	В3	0	В3	500000	m ₃	5000000	В3	1200	ktoe	1560	ktoe	1800	ktoe
Slovenia	1726688	ш3	0	В3	n.a.	п3	4275	m ₃	77579	m ₃	247326	m ₃	1561217	ш3	442	ktoe	n.a.	ktoe	n.a.	ktoe
Slovakia	1945000	ton	3718000	ton	4716000	ton	n.a.	ton	n.a.	ton	238000	ton	1707000	ton	453.4	ktoe	979	ktoe	1222	ktoe
Finland	21300000	т3	41000000	пз	47000000	т3	0	пз	0	m ₃	193000	ton	43000000	пз	7273	ktoe	6980	ktoe	8060	ktoe
Sweden	22951	ktdm	25724	ktdm	27029	ktdm	175	ktdm	175	ktdm	129		23172	ktdm	8206	ktoe	9128	ktoe	9628	ktoe
United Kingdom	1855534	ton	3545000	ton	5225000	ton	81211	ton	n.a.	ton	n.a.	ton	1936744	ton	582	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	145388617^e	m3	190517090^{f}	m ₃	209442901 <i>9</i>	В3	3604311^{h}	ш3	355106^{i}	m3	3591569^{j}	m ³	163937895^{k}	m ₃	61320^{l}	ktoe	64207^{m}	ktoe	71758^{n}	ktoe

The Netherlands apply the unit 'kton its' (we base) in the NREAP, which has been abbreviated in this table as 'ktns' Sweden applies the unit 'kton dry matter' in the NREAP, which has been abbreviated in this table as 'ktdm'.

has been reported here: 207 to 545 ktoe. The table mentions the (calculated) average value. ^d For the Netherlands a datarange has been reported here: 248 to 868 ktoe. The table mentions the (calculated) average value. ^e Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2006 are the following countries: Belgium (1167 kt); Bulgaria (2527513 t); Denmark (3489000 ton); Spain (10018730 ton); Cyprus (16347 ton); Netherlands (2910 km); Austria (16400000 ktoe); Slovakia (1945000 ton); Sweden (22951 ktdm); United Kingdom (1855534 ton) a For the Netherlands a datarange has been reported here: 759 to 2607 kms. The table mentions the (calculated) average value. For the Netherlands a datarange has been reported here: 910 to 4300 kms. The table mentions the (calculated) average value. For the Netherlands a datarange has been reported here: 910 to 4300 kms. The table mentions the (calculated) average value.

I Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2015 are the following countries: Belgium (1893 kt); Bulgaria (2725 kt); Denmark (8265000 ton); Spain (11923266 ton); Netherlands (775 to 2607 ktns); Austria (195000000 ktoe); Poland (11983 Mg); Portugal (10878000 ton); Slovakia (3718000 ton); Sweden (23748 ktdnn); United Kingdom (345000 ton) (345000 ton); Formark (8642000 ton); Spain (11923266 ton); Netherlands (910 to 4300 ktns); Austria (210000000 ktoe); Poland (12456 Mg); Portugal (106840000 ton); Slovakia (4716000 ton); Sweden (27029 ktdnn); United Kingdom (52250000 ton)

Not considered in the EU-27 sum in the 'imported (eu)' for the year 2006 are the following countries: Belgium (905 kt); Cyprus (8608 ton); Netherlands (690 ktns); Austria (4170000 ktoe); Sweden (175 ktdn); United Kingdom (81211 ton)

Not considered in the EU-27 sum in the 'imported (non-eu)' for the year 2006 are the following countries: Belgium (49 kt); Netherlands (235 kms); Sweden (175 ktdm);

Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Bulgaria (99888 t); Netherlands (1463 kms); Austria (500000 ktoe); Slovakia (238000 ton); Finland (193000 ton); Sweden (129 kdm); Otto considered in the EU-27 sum in the 'net amount' for the year 2006 are the following countries: Belgium (2120 kt); Bulgaria (2427625 t); Spain (10018750 ton); Cyprus (24928 ton); Netherlands (2088 kms); Austria (205200000 ktoe); Sk (20520000 ktoe); Slovakia (1707000 ton); Sweden (23172 ktdm);

l Not considered in the EU-27 sum in the 'primary energy production' for the year 2006 are the following countries: Denmark (3326000 ton); Hungary (25 Pl/year);

Mot considered in the EU-27 sum in the 'primary energy production' for the year 2015 is: Hungary (25 Pl/year);

Mot considered in the EU-27 sum in the 'primary energy production' for the year 2015 is: Hungary (25 Pl/year);

Table 62: Biomass supply from forestry (direct) for the years 2006 (including import and export), 2015 and 2020.

			Amount of domestic resource	tic resourc.	٥		Imported (EU)	EU)	Imported (non-EU)	10n-EU)	Exported (EU/non-EU)	/non-EU)	Net amount	nt		P	rimary energ	Primary energy production		
	2006		2015		2020		2006		2006	9	2006		2006		2006	9	2015	15		
Belgium	532.17	kt	572.3	kt	572.3	kt	0	kt	0	kt	0	kt	532.17	kt	211.54	ktoe	226.1	ktoe	225.1	ktoe
Bulgaria	2411168	.	2610	kt	2805	ĸ	0	t	0	t	88866	t	2311280	t	735	ktoe	830	ktoe	892	ktoe
Czech Republic	3268	m ₃	3868	m3	4412	m ₃	12	m3	0	m ₃	139	m ³	3142	m3	975	ktoe	1223	ktoe	1405	ktoe
Denmark	3000000	ton	3376000	ton	3753000	ton	1694000	ton	n.a.	ton	n.a.	ton	n.a.	ton	4837000	ton	750	ktoe	834	ktoe
Germany	29557000	m3	41693500^a	m ₃	39447000	m3	115000	m3	n.a.	m3	n.a.	m ³	29672000	m ₃	6162	ktoe	96298	ktoe	8192	ktoe
Estonia	1115000	m3	3600000	m3	3600000	m3	1000	m3	2000	m3	82000	m ³	n.a.	m3	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Ireland	23216	m ³	512000	m ₃	807	m ₃	2182	m ₃	0	m ³	0	m ³	25398	m ₃	n.a.	ktoe	79.53	ktoe	125	ktoe
Greece	2908571	m3	800000	m3	800000	m3	n.a.	m ₃	n.a.	m ³	n.a.	m ³	2908571	m3	702	ktoe	136	ktoe	136	ktoe
Spain	4800000	ton	6327647	ton	8322328	ton	n.a.	ton	n.a.	ton	n.a.	ton	4800000	ton	1200	ktoe	1582	ktoe	2081	ktoe
France	29030250	m ₃	36400000^{c}	m ₃	42520000^{d}	m ₃	43094	m ₃	1404	m ₃	259660	m ³	28515088	m ₃	6256	ktoe	8032e	ktoe	9481^{f}	ktoe
Italy	2200000	m ₃	4000000	m ₃	10000000	m3	n.a.	m3	n.a.	m ₃	n.a.	m ₃	n.a.	m ₃	880	ktoe	1600	ktoe	4000	ktoe
Cyprus	5432	ton	5000^{9}	ton	2000^{h}	ton	383	ton	n.a.	ton	n.a.	ton	5815	ton	2.1	ktoe	1.8^{i}	ktoe	1.8^{j}	ktoe
Latvia	1380	m ₃	n.a.	m ₃	n.a.	m ₃	06	m ₃	n.a.	m ₃	2568.6	m ³	4038.6	m ₃	2827.02	ktoe	n.a.	ktoe	n.a.	ktoe
Lithuania	1509	m ₃	2327000	m ₃	2082000	m ₃	6	m ₃	4	m ₃	80/3	m ³	1439	m ₃	282	ktoe	456	ktoe	408	ktoe
Luxempourg	24500	m ₃	27000	m ₃	44000	m3	9300	m ₃	n.a.	m ₃	1800	m ³	32000	m ₃	5.5	ktoe	24	ktoe	40	ktoe
Hungary	3028000	m3	3100000	m3	3300000	m3	100000	m3	100000	m ₃	100000	m ³	3128000	m3	22.5	PJ/year	22.32	PJ/year	23.74	PJ/year
Malta	0	m3	n.a.	m3	n.a.	m3	0	m3	0	m ₃	0	m ³	n.a.	m3	0	ktoe	n.a.	ktoe	n.a.	ktoe
Netherlands	270	ktns	1285^{k}	ktns	2130^{l}	ktns	0	ktns	0	ktns	0	ktns	270	ktns	52	ktoe	236^m	ktoe	$^{389}^{n}$	ktoe
Austria	8500000	ktoe	10000000	ktoe	11000000	ktoe	320000	ktoe	n.a.	ktoe	20000	ktoe	8770000	ktoe	1735	ktoe	1978	ktoe	2175	ktoe
Poland	12493	m ₃	6411	Mg	6081	Mg	n.a.	m3	n.a.	m ₃	n.a.	m ₃	12493	m3	1894	ktoe	1071	ktoe	1016	ktoe
Portugal	4751000	ton	2778000	ton	5610000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	1188	ktoe	1504	ktoe	1460	ktoe
Romania	2500000	m ₃	3000000	m ₃	3500000	m3	0	m ₃	0	m ₃	0	m ³	2500000	m ₃	009	ktoe	720	ktoe	840	ktoe
Slovenia	1318077	m3	1302000	m3	1338000	m3	4275	m3	77579	m3	206326	m ³	1193606	m3	297	ktoe	324	ktoe	333	ktoe
Slovakia	820000	ton	1818000	ton	2721000	ton	n.a.	ton	n.a.	ton	54000	ton	266000	ton	183	ktoe	434	ktoe	650	ktoe
Finland	8300000	m ₃	14000000	m3	19000000	m ₃	0	m3	0	m ₃	0	m ³	8300000	m3	1446	ktoe	2380	ktoe	3230	ktoe
Sweden	5120	ktdm	9919	ktdm	6819	ktdm	0	ktdm	0	ktdm	0	ktdm	5120	ktdm	2045	ktoe	2463	ktoe	2724	ktoe
United Kingdom	000006	ton	1565000	ton	1825000	ton	0	ton	n.a.	ton	n.a.	ton	000006	ton	299	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	80023264^{o}	m ₃	110765368^p	m ₃	125636219 ^q	m ₃	274962^r	m ₃	180987	m3	955494 ⁸	m ³	76295776 ^t	m ₃	n 7 6	ktoe	34712 ^v	ktoe	40638^{w}	ktoe
						Ì														

Various countries have more detail reported on biomass supply in the introduction chapter of this report. See Section 1.5.1 to 1.5.27 and Section 1.8.2 to 1.8.28. The Netherlands apply the unit 'kton ns' (wet base) in the NREAP, which has been abbreviated in this table as 'ktms'.

Sweden applies the unit 'kton dry matter' in the NREAP, which has been abbreviated in this table as 'ktdm

E. For France a datarange has been reported here: 34700000 to 381000000 m3. The table mentions the (calculated) average value. The table mentions the (calculated) average value. For France a datarange has a For Germany a datarange has been reported here: 41060000 to 42327000 m3. The table mentions the (calculated) average value. b For Germany a datarange has been reported here: 8527 to 8790 ktoe. The table mentions the (calculated) average value. been reported here: 7660 to 8410 ktoe. The table mentions the (calculated) average value. ^f For France a datarange has been reported here: 8556 to 10406 ktoe. The table mentions the (calculated) average value.

Per Cyprus a datarange has been reported here: 4500 to 5500 ton. The table mentions the (calculated) average value. h For Cyprus a datarange has been reported here: 4500 to 5500 ton. The table mentions the (calculated) average value. to 2.0 ktoc. The table mentions the (calculated) average value. ³ For Cyprus a datarange has been reported here: 1.6 to 2.0 ktoc. The table mentions the (calculated) average value.

^k For the Netherlands a datarange has been reported here: 361 to 2209 kms. The table mentions the (calculated) average value. ¹ For the Netherlands a datarange has been reported here: 435 to 3825 kms. The table mentions the (calculated) average value. ² For the Netherlands a datarange has been reported here: 79 to 699 ktoe. The table mentions the (calculated) average value. ³ For the Netherlands a datarange has been reported here: 70 to 609 ktoe. The table mentions the (calculated) average value. ³ For the Netherlands a datarange has been reported here: 70 to 405 ktoe. The table mentions the (calculated) average value. ³ For the Netherlands a datarange has been reported here: 70 to 609 ktoe. The table mentions the (calculated) average value. ³ For the Netherlands a datarange has been reported here: 70 to 609 ktoe. The table mentions the (calculated) average value. ³ For the Netherlands a datarange has been reported here: 70 to 609 ktoe. The table mentions the (calculated) average value. ³ For the Netherlands a datarange has been reported here: 70 to 609 ktoe. The table mentions the (calculated) average value. ³ For the Netherlands a datarange has been reported here: 70 to 609 ktoe. The table mentions the (calculated) average value. ³ For the Netherlands a datarange has been reported here: 70 to 609 ktoe. The table mentions the Calculated) average value. ⁴ For the Netherlands a datarange value. ⁴

Post considered in the EU-27 sum in the 'amount of domestic resource' for the year 2015 are the following countries: Belgium (572 kt); Bulgaria (2610 kt); Denmark (3736000 ton); Spain (6327647 ton); Cyprus (4500 to 5500 ton); Netherlands (361 to 2209 kms); Austria (10000000 ktoe); Poland (6411 Mg); Portugal (5778000 ton); Slovakia (1818000 ton); Sweden (6166 ktdm); United Kingdom (1565000 ton)

⁹ Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2020 are the following countries: Belgium (572 kt); Bulgaria (2805 kt); Denmark (3753000 ton); Spain (8322328 ton); Cyprus (4500 to 5500 ton); Netherlands (435 to 3825 kms); Austria (110000000 ktoe); (4751000 ton); Slovakia (820000 ton); Sweden (5120 ktdm); United Kingdom (900000 ton)

Not considered in the EU-27 sum in the 'imported (eu)' for the year 2006 are the following countries: Denmark (1694000 ton); Cyprus (383 ton); Austria (30000 ktoe); Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Bulgaria (99888 t); Austria (50000 ktoe); Slovakia (54000 ton); Not considered in the EU-27 sum in the 'net amount' for the year 2006 are the following countries: Belgium (532 kt); Bulgaria (2311280 t); Spain (4800000 ton); Cyprus Poland (6081 Mg); Portugal (5610000 ton); Slovakia (2721000 ton); Sweden (6819 ktdm); United Kingdom (1825000 ton)

'net amount' for the year 2006 are the following countries: Belgium (532 kt); Bulgaria (2311280 t); Spain (4800000 ton); Cyprus (5815 ton); Netherlands (270 ktns); Austria (8770000 ktoe); Slovakia (766000 ton); Sweden (5120 ktdm); United

Not considered in the EU-27 sum in the 'primary energy production' for the year 2006 are the following countries: Denmark (4837000 ton); Hungary (23 PJ/year); Not considered in the EU-27 sum in the 'primary energy production' for the year 2015 are the following countries: Hungary (22 PJ/year); Not considered in the EU-27 sum in the 'primary energy production' for the year 2020 are the following countries: Hungary (24 PJ/year);

Table 63: Biomass supply from forestry (indirect) for the years 2006 (including import and export), 2015 and 2020

		The state of the s						The second second		100000000000000000000000000000000000000	1					The Parties of the Pa			
2006		2015		2020		2006		2006		2006		2006		200	6	201	5		
633.98	kt	1320.48	kt	1655.331	kt	904.58	kt	49.48	kt	0	kt	1588.14	kt	602.83	ktoe	505.93	ktoe	643.49	ktoe
116345	+		kt	146	ĸ	0	-	0	-	0	+	116345	-	24	ktoe	30	ktoe	38	ktoe
	83		m ₃	5489	⊞3	43	В3	0	В3	378	В3	2264	В3	561	ktoe	1306	ktoe	1311	ktoe
	ton		ton	4889000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	489000	ton	172	ktoe	172	ktoe
5756000	m ³	17139000	m ₃	18174000	m3	1725000	m ₃	n.a.	m3	n.a.	т3	17481000	m ₃	3630	ktoe	3559	ktoe	3774	ktoe
2500000	т3	n.a.	m ₃	n.a.	m ₃	0	т3	0	m ₃	0	В3	n.a.	т3	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
280158	m ₃		В3	860	m ₃	0	п3	1089	ш3	0	т3	1280158	ш3	n.a.	ktoe	90.28	ktoe	133	ktoe
316988	83		m ₃	133333	⊞3	n.a.	В3	n.a.	В3	n.a.	В3	316988	В3	27	ktoe	28	ktoe	28	ktoe
	ton		ton	5674765	ton	1000	ton	0	ton	1000	ton	5218750	ton	1600	ktoe	1679	ktoe	1702	ktoe
30748004	m ₃	34700000^a	ш3	36850000^{b}	ш3	1613361	ш3	172938	ш3	1943941	В3	30590362	ш3	4773	ktoe	5420^{c}	ktoe	5748^{d}	ktoe
	m3	0	m ₃	0	m ₃	n.a.	m ₃	n.a.	m ₃	n.a.	ш3	n.a.	т3	n.a.	ktoe	0	ktoe	0	ktoe
10915	ton	9000^{e}	ton	9000^{f}	ton	8225	ton	n.a.	ton	27	ton	19113	ton	6.9	ktoe	3.39	ktoe	3.3^{h}	ktoe
	m ₃	n.a.	В3	n.a.	m ₃	26.4	п3	n.a.	ш3	756.8	т3	1461.2	ш3	1022.84	ktoe	n.a.	ktoe	n.a.	ktoe
	m ₃		ш3	1040000	ш3	219	ш3	92	ш3	350/1	В3	2275	ш3	446	ktoe	228	ktoe	204	ktoe
	ш3	32000	В3	41000	п3	n.a.	В3	n.a.	В3	150000	т3	100000	В3	17.1	ktoe	25	ktoe	67	ktoe
300000	m ₃	400000	В3	500000	m ₃	0	т3	0	т3	0	В3	300000	ш3	2.23	PJ/year	2.97	PJ/year	3.72	PJ/year
0	m ₃	n.a.	m ₃	n.a.	В3	0	т3	0	т3	0	т3	n.a.	т3	0	ktoe	n.a.	ktoe	n.a.	ktoe
2640	ktns	398	ktns	475	ktns	690	ktns	235	ktns	1463	ktns	1818	ktns	410	ktoe	140	ktoe	169	ktoe
7900000	ktoe	9500000	ktoe	10000000	ktoe	3850000	ktoe	n.a.	ktoe	n.a.	ktoe	11750000	ktoe	1990	ktoe	1610	ktoe	1695	ktoe
5930	Mg	5572	Mg	6375	Mg	n.a.	Mg	n.a.	Mg	n.a.	Mg	5930	Mg	2279	ktoe	931	ktoe	1065	ktoe
651000	ton	5100000	ton	5074000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	1543	ktoe	1442	ktoe	1434	ktoe
	ш3	Ī	В3	4000000	п3	0	В3	0	В3	500000	т3	2500000	В3	600	ktoe	840	ktoe	960	ktoe
408611	ш3	0	В3	n.a.	п3	0	В3	0	В3	41000	т3	367611	В3	145	ktoe	n.a.	ktoe	n.a.	ktoe
	ton	1900000	ton	1995000	ton	n.a.	ton	n.a.	ton	184000	ton	941000	ton	270.4	ktoe	545	ktoe	572	ktoe
34700000	В3	27000000	В3	28000000	В3	0	В3	0	В3	193000	ton	34700000	В3	5932	ktoe	4600	ktoe	4830	ktoe
17831	ktdm	19558	ktdm	20210	ktdm	175	ktdm	175	ktdm	129	ktdm	18052	ktdm	6160	ktoe	6665	ktoe	6904	ktoe
955534	ton	1980000	ton	3400000	ton	81211	ton	n.a.	ton	n.a.	ton	1036744	ton	283	ktoe	n.a.	ktoe	n.a.	ktoe
89265353^{i}	m ³	84653722^{j}	m3	88744682^{k}	m ³	3338649^{l}	m ³	174119^{m}	m ³	2636076 ⁿ	m ³	87642119°	m3	32323 ^p	ktoe	29819^{q}	ktoe	31453^{r}	ktoe
	8	B. G. H. G. H. B. G. H. B.	06 06 07 07 07 07 07 07 07 07 07 07 07 07 07	2015 k (1320.48) (115 m3 5389 ton 4889000 m3 17139000 m3 17139000 m3 1733333 ton 581000 m3 133333 ton 9000e m3 3470000e m3 1163000 m3 1163000 m3 1163000 m3 1163000 m3 20000 m3 320000 m3 320000 m3 320000 m3 1163000 m3 11630000 m3 3200000 m3 3200000 m3 3200000 m3 3200000 m3 1900000 m3 19000000 m3 190000000 m3 190000000 m3 190000000 m3 190000000 m3 19000000000000000000000000000000000000	06 2015 Rt 1320.48 Rt 1655. Rt 1320.48 Rt 1655. Rt 1320.48 Rt 1655. Rt 115 Rt 15 Rt 1655. Rt 115 Rt 15 Rt 1655. Rt 115 Rt 1655. Rt 115 Rt 1655. Rt 1320.00 Rt 1655. Rt 133000 Rt 1655. Rt 153000 Rt 1655. Rt 153000 Rt 1655. Rt 153000 Rt 1655. Rt 1530000 Rt 1655. Rt 1650000 Rt 1655. Rt 1650000 Rt 1655. Rt 16500000 Rt 1655. Rt 1650000 Rt 1655. Rt 16500000 Rt 1655. Rt 165000000 Rt 1655. Rt 1650000000 Rt 1655. Rt 165000000000000000000000000000000000000	06 2015 2020 66 2015 2020 6 120,48 kt 1655,331 6 t 115 kt 146 m3 5389 m3 5489 ton 4889000 ton 4889000 m3 17139000 m3 18174000 m3 17139000 m3 1874000 m3 17139000 m3 1874700 m3 133333 m3 133333 ton 5595619 ton 90006 m3 133333 m3 133333 ton 5595619 ton 90000 m3 1400000 m3 36850000 m3 1163000 m3 1504000 m3 1163000 m3 1040000 m3 1163000 m3 1040000 m3 1163000 m3 1040000 m3 1163000 m3 1040000 <t< td=""><td>06 2015 2020 kt 1320.48 kt 1655.331 kt t t 115 kt 146 kt m3 5389 m3 5449 m3 m3 17139000 tcn 4889000 tcn m3 1713900 m3 18174000 m3 m3 1713900 m3 18174000 m3 m3 1713900 m3 18174000 m3 1 m3 1713900 m3 18174000 m3 1 m3 1713900 m3 18174000 m3 1 m3 1713900 m3 183333 m3 1 m3 160000 m3 36850000 m3 1 m3 1163000 m3 160000 m3 1 m3 1163000 m3 1040000 m3 1 m3 400000 m3 104000 m3 1</td><td>06 2015 2020 2006 66 2015 2020 2006 68 t 11320.48 kt 1655.331 kt 904.58 6 t 115 kt 146 kt 0 m3 5389 m3 5489 m3 43 ton 4889000 ton ma. m3 1725000 m3 1713900 m3 18174000 m3 1725000 m3 1733333 m3 1817450 m3 1000 m3 133333 m3 133333 m3 1000 m3 140000 m3 36850000b m3 1000 m3 34700000² m3 36850000b m3 1000 m3 1163300 m3 1640000 m3 1613361 m3 1163000 m3 1040000 m3 264 m3 1163000 m3 1040000 m3 2264</td><td>bb 2015 2020 2006 kt 1320.48 kt 1655.331 kt 904.58 kt t t 115 kt 1655.331 kt 904.58 kt m3 5389 m3 5489 m3 43 m3 m3 17139000 m3 1874000 con m1. con m3 17139000 m3 18174000 m3 1725000 m3 m3 17139000 m3 18174000 m3 1725000 m3 m3 17139000 m3 18174000 m3 1725000 m3 m3 1733333 m3 n.a. m3 na na na m3 147000000 m3 5674765 ton m3 na na m3 ton 595519 ton 5674765 ton m3 na na na na na na na na na</td><td>06 2015 2020 2006 2006 2006 66 2015 2020 2006 2006 61 It 115 It 1655.331 It 904.58 It 49.48 10 m3 5389 m3 5489 m3 43 m3 0 10 4889000 Icon 4889000 Icon n.a. m3 0 m3 173900 m3 18174000 m3 1725000 m3 n.a. m3 173900 m3 18174000 m3 1725000 m3 n.a. m3 173900 m3 18174000 m3 1725000 m3 n.a. m3 1739333 m3 1733333 m3 10.a. m3 1089 m3 140000 m3 36850000b m3 1613361 m3 1089 m3 140000 m3 1640000 m3 1613361 m3 17293</td><td> Mathematical Process Mathematical Process</td><td> Mathematical Process Mathematical Process</td><td> Box </td><td> Mathematical Properties Mathematical Pro</td><td> Botal </td><td> </td><td> Bota </td><td> Bo 2015 2020 2006 2</td><td> The column The</td></t<>	06 2015 2020 kt 1320.48 kt 1655.331 kt t t 115 kt 146 kt m3 5389 m3 5449 m3 m3 17139000 tcn 4889000 tcn m3 1713900 m3 18174000 m3 m3 1713900 m3 18174000 m3 m3 1713900 m3 18174000 m3 1 m3 1713900 m3 18174000 m3 1 m3 1713900 m3 18174000 m3 1 m3 1713900 m3 183333 m3 1 m3 160000 m3 36850000 m3 1 m3 1163000 m3 160000 m3 1 m3 1163000 m3 1040000 m3 1 m3 400000 m3 104000 m3 1	06 2015 2020 2006 66 2015 2020 2006 68 t 11320.48 kt 1655.331 kt 904.58 6 t 115 kt 146 kt 0 m3 5389 m3 5489 m3 43 ton 4889000 ton ma. m3 1725000 m3 1713900 m3 18174000 m3 1725000 m3 1733333 m3 1817450 m3 1000 m3 133333 m3 133333 m3 1000 m3 140000 m3 36850000b m3 1000 m3 34700000² m3 36850000b m3 1000 m3 1163300 m3 1640000 m3 1613361 m3 1163000 m3 1040000 m3 264 m3 1163000 m3 1040000 m3 2264	bb 2015 2020 2006 kt 1320.48 kt 1655.331 kt 904.58 kt t t 115 kt 1655.331 kt 904.58 kt m3 5389 m3 5489 m3 43 m3 m3 17139000 m3 1874000 con m1. con m3 17139000 m3 18174000 m3 1725000 m3 m3 17139000 m3 18174000 m3 1725000 m3 m3 17139000 m3 18174000 m3 1725000 m3 m3 1733333 m3 n.a. m3 na na na m3 147000000 m3 5674765 ton m3 na na m3 ton 595519 ton 5674765 ton m3 na na na na na na na na na	06 2015 2020 2006 2006 2006 66 2015 2020 2006 2006 61 It 115 It 1655.331 It 904.58 It 49.48 10 m3 5389 m3 5489 m3 43 m3 0 10 4889000 Icon 4889000 Icon n.a. m3 0 m3 173900 m3 18174000 m3 1725000 m3 n.a. m3 173900 m3 18174000 m3 1725000 m3 n.a. m3 173900 m3 18174000 m3 1725000 m3 n.a. m3 1739333 m3 1733333 m3 10.a. m3 1089 m3 140000 m3 36850000b m3 1613361 m3 1089 m3 140000 m3 1640000 m3 1613361 m3 17293	Mathematical Process Mathematical Process	Mathematical Process Mathematical Process	Box	Mathematical Properties Mathematical Pro	Botal		Bota	Bo 2015 2020 2006 2	The column The

^a For France a datarange has been reported here: 33800000 to 35600000 m3. The table mentions the (calculated) average value. ^b For France a datarange has been reported here: 5280 to 5560 ktoe. The table mentions the (calculated) average value. ^d For France a datarange has been reported here: 5473 to 6023 ktoe. The table mentions the (calculated) average value. ^a For Cyprus a datarange has been reported here: 5280 to 5560 ktoe. The table mentions the (calculated) average value. ^b For Cyprus a datarange has been reported here: 5000 to 10000 ton. The table mentions the (calculated) average value. ^g For Cyprus a datarange has been reported here: 29 to 3.6 ktoe. The table mentions the (calculated) average value. ^g For Cyprus a datarange has been reported here: 29 to 3.6 ktoe. The table mentions the (calculated) average value. ^a For Cyprus a datarange has been reported here: 29 to 3.6 ktoe. The table mentions the (calculated) average value. ^a For Cyprus a datarange has been reported here: 29 to 3.6 ktoe. The table mentions the (calculated) average value. ^a For Cyprus a datarange has been reported here: 29 to 3.6 ktoe. The table mentions the (calculated) average value.

Mg); Portugal (5651000 ton); Slovakia (1125000 ton); Sweden (17831 ktdm); United Kingdom (955534 ton)

J Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2015 are the following countries: Belgium (1320 kt); Bulgaria (115 kt); Denmark (4889000 ton); Spain (5595619 ton); Cyprus (8000 to 10000 ton); Netherlands (398 ktms); Austria (9500000 ktoe); Poland (1572 Mg); Portugal (5100000 ton); Slovakia (1900000 ton); Sweden (19558 ktdm); United Kingdom (1980000 ton) Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2006 are the following countries: Belgium (634 kt); Bulgaria (116345 t); Denmark (489000 ton); Spain (5218750 ton); Cyprus (10915 ton); Netherlands (2640 ktns); Austria (79000000 ktoe); Poland (5930 ton); Cyprus (10915 ton); Netherlands (2640 ktns); Austria (79000000 ktoe); Poland (5930 ton); Spain (5218750 ton); Cyprus (10915 ton); Netherlands (2640 ktns); Austria (79000000 ktoe); Poland (5930 ton); Spain (5218750 ton); Cyprus (10915 ton); Netherlands (2640 ktns); Austria (7900000 ktoe); Poland (5930 ton); Spain (5218750 ton); Cyprus (10915 ton); Netherlands (2640 ktns); Austria (7900000 ktoe); Poland (5930 ton); Spain (5218750 ton); Cyprus (10915 ton); Netherlands (2640 ktns); Austria (7900000 ktoe); Poland (5930 ton); Austria (7900000 ktoe); Poland (790000 ktoe); Poland (7900000 ktoe); Poland (790000

k Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2020 are the following countries: Belgium (1655 kt); Bulgaria (146 kt); Denmark (4889000 ton); Spain (5674765 ton); Cyprus (8000 to 10000 ton); Netherlands (475 km); Austria (10000000 ktoe); Poland

Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Belgium (49 kt); Netherlands (525 kms); Sweden (175 kmm); United Kingdom (81211 ton) Not considered in the EU-27 sum in the 'net amount' for the year 2006 are the following countries: Spain (1000 ton); Cyprus (27 ton); Netherlands (143 kms); Slovakia (184000 ton); Finland (193000 ton); Sweden (175 kdm); United Kingdom (1036744 ton) (103674

Table 64: Biomass supply from agriculture and fisheries (total) for the years 2006 (including import and export), 2015 and 2020.

		A	Amount of domestic resource	tic resource	43		Imported (EU)	(EU)	Importec	Imported (non-EU)	Exported	Exported (EU/non-EU)	Net amount	nt			Primary energy production	y production		
	2006		2015		2020		2006		2	2006	(4	2006	2006		2006	91	2015	5		
Belgium	1835.35	kt	3958.5	kt	8855.6	kt	74.4	kt	33.26	kt	0	kt	1913.01	kt	87.39	ktoe	440.5	ktoe	1030.3	ktoe
Bulgaria	19466	t	542	kt	705	kt	0	t	0	t	0	t	19466	ţ	5	ktoe	130	ktoe	169	ktoe
Czech Republic	n.a.	ton	800	ton	1000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	286	ktoe	358	ktoe
Denmark	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe
Germany	21410000	ton	n.a.	ton	n.a.	ton	6712000	ton	n.a.	ton	n.a.	ton	28122000	ton	7357	ktoe	7846.5	ktoe	9135.5	ktoe
Estonia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Ireland	215727	ton	1009595	ton	2472928	ton	0	ton	0	ton	0	ton	0	ton	n.a.	ktoe	382	ktoe	775	ktoe
Greece	508886	ton	10075000	ton	23176000	ton	n.a.	ton	n.a.	ton	n.a.	ton	508.886	ton	202	ktoe	1268	ktoe	1659	ktoe
Spain	5230853	ton	17318204	ton	35208662	ton	n.a.	ton	n.a.	ton	141330	ton	6015445	ton	1712	ktoe	2262	ktoe	3240	ktoe
France	4726930	ton	0	ton	15910000	ton	n.a.	ton	n.a.	ton	45200	ton	4681730	ton	1217	ktoe	3005	ktoe	4210	ktoe
Italy	2675000	ton	6481600	ton	20200000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	883	ktoe	2600	ktoe	6500	ktoe
Cyprus	2841	ton	3000	ton	5500	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	1.003	ktoe	21.2	ktoe	20.9	ktoe
Latvia	5590.222	ktoe	0	ton	0	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Lithuania	0	m ₃	1184	ĸ	4282	kt	0	m3	0	m ₃	0	m ₃	0	m ₃	0	ktoe	159	ktoe	335	ktoe
Luxempourg	n.a.	ton	45000	ton	72000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	10	ktoe	25	ktoe	39	ktoe
Hungary	302000	ton	3600000	ton	5850000	ton	n.a.	ton	n.a.	ton	n.a.	ton	302000	ton	2.18	PJ/year	27.24	PJ/year	47.31	PJ/year
Malta	n.a.	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	n.a.	ton	0	ktoe	n.a.	ktoe	n.a.	ktoe
Netherlands	1550	ktns	15224^{a}	ktns	26852^{b}	ktns	350	ktns	0	ktns	0	ktns	1900	ktns	551	ktoe	1193^{c}	ktoe	2031^{d}	ktoe
Austria	930000	ktoe	5350000	ktoe	9770000	ktoe	270000	ktoe	n.a.	ktoe	n.a.	ktoe	1200000	ktoe	337	ktoe	420	ktoe	730	ktoe
Poland	4328	ton	7104	Mg	11484	Mg	6	ton	0	ton	290	ton	550	ton	461	ktoe	1763	ktoe	2929	ktoe
Portugal	0	ton	1050000	ton	1131000	ton	0	ton	0	ton	0	ton	0	ton	n.a.	ktoe	302	ktoe	326	ktoe
Romania	1900000	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	0	ton	817	ktoe	n.a.	ktoe	n.a.	ktoe
Slovenia	n.a.	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Slovakia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	151.8	ktoe	2180	ktoe	2194	ktoe
Finland	127080	ton	587500	ton	1175000	ton	0	ton	0	ton	0	ton	128080	ton	54.34	ktoe	248	ktoe	497	ktoe
Sweden	585	ktdm	793	ktdm	296	ktdm	307	ktdm	595	ktdm	0	ktdm	1487	ktdm	617	ktoe	322	ktoe	408	ktoe
United Kingdom	1057265	ton	4805000	ton	17865000	ton	736086	ton	n.a.	ton	n.a.	ton	1793352	ton	400	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	1835^{e}	kt	^{5685}f	kt	138439	kt	74^h	kt	33^i	kt	i_0	kt	1913^{k}	kt	15173 ^l	ktoe	24853^{m}	ktoe	36586^{n}	ktoe

Various countries have more detail reported on biomass supply in the introduction chapter of this report. See Section 1.5.1 to 1.5.27 and Section 1.8.2 to 1.8.28. The Netherlands apply the unit 'kton ns' (wet base) in the NREAP, which has been abbreviated in this table as 'kms'

For the Netherlands a datarange has been reported here: 5999 to 24448 ktns. The table mentions the (calculated) average value. ^b For the Netherlands a datarange has been reported here: 9941 to 43763 kms. The table mentions the (calculated) average value. ^c For the Netherlands a datarange has been reported here: 1367 ktoe. The table mentions the (calculated) average value. ^d For the Netherlands a datarange has been reported here: 1307 to 2754 ktoe. The table mentions the (calculated) average value. ^d For the Netherlands (19466 t); Germany (21410000 ton); Ireland (215727 ton); Greece (508886 ton); France (4726930 ton); Iraly (2675000 ton); Cyprus (2841 ton); Austria (302000 ton); Netherlands (1550 ktos); Austria (930000 ktoe); Poland (4328 ton); Romania (1900000 ton); Finland (127080 ton); Netherlands (1057265 ton)

Joseph Considered in the EU-27 sum in the 'amount of domestic resource' for the year 2015 are the following countries: Czech Republic (800 ton); Ireland (1009595 ton); Greece (10075000 ton); Bain (17318204 ton); Italy (6481600 ton); Cyprus (30000 ton); Enland (387500 ton); Sweden (793 ktdm); United Kingdom (48050000 ton); Portugal (1050000 ton); Finland (2472928 ton); Enland (2472928 ton); Greece (23176000 ton); Finland (2472928 ton); Greece (23176000 ton); Finland (2472928 ton); Cyprus (15910000 ton); Finland (2472928 ton); Greece (23176000 ton); Finland (2472928 ton

-uxembourg (72000 ton); Hungary (5850000 ton); Netherlands (9941 to 43763 kms); Austria (9770000 ktoe); Poland (11484 Mg); Portugal (1131000 ton); Finland (1175000 ton); Sweden (967 ktdm), United Kingdom (17865000 ton)

Not considered in the EU-27 sum in the 'imported (eu)' for the year 2006 are the following countries: Germany (6712000 ton); Netherlands (350 kms); Austria (270000 ktoe); Poland (9 ton); Sweden (307 ktdm), United Kingdom (736086 ton)

Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Spain (141330 ton); France (45200 ton); Poland (290 ton); Not considered in the EU-27 sum in the 'imported (non-eu)' for the year 2006 are the following countries: Sweden (595 ktdm);

Not considered in the EU-27 sum in the 'net amount' for the year 2006 are the following countries: Bulgaria (194661); Germany (28122000 ton); Greece (509 ton); France (4681730 ton); Hungary (302000 ton); Notherlands (1900 kms); Austria (1200000 ktoe); Poland

Not considered in the EU-27 sum in the 'primary energy production' for the year 2006 is: Hungary (2 Pl/year); Not considered in the EU-27 sum in the 'primary energy production' for the year 2015 is: Hungary (27 Pl/year); Not considered in the EU-27 sum in the 'primary energy production' for the year 2020 is: Hungary (47 Pl/year);

Table 65: Biomass supply from agriculture and fisheries (direct) for the years 2006 (including import and export), 2015 and 2020

			Amount of domestic resource	mestic resor	ırce		Imported (EU)	(EU)	Imported	Imported (non-EU)	Expor	Exported (EU/non-EU)	Net amount	nt		Prima	Primary energy production	duction		
	2006		2015	5	2020	20	2006	6	20	2006		2006	2006		2	2006	2015	5		
Belgium	30	kt	1497.7	kt	3404.7	kt	0	kt	33.26	kī	0	kt	63.26	kt	29.69	ktoe	221.6	ktoe	489.8	ktoe
Bulgaria	0	-	417	kt	542	kt	0	-	0	-	0	1	0	-	0	ktoe	100	ktoe	130	ktoe
Czech Republic	n.a.	ton	400	ton	500	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	143	ktoe	179	ktoe
Denmark	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe
Germany	15331000	ton	22390000	ton	6903000	ton	6362000	ton	n.a.	ton	n.a.	ton	21693000	ton	6688	ktoe	6903	ktoe	7619	ktoe
Estonia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Ireland	4068	ton	472160	ton	715400	ton	0	ton	0	ton	0	ton	0	ton	n.a.	ktoe	247	ktoe	335	ktoe
Greece	n.a.	ton	75000	ton	176000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	68	ktoe	159	ktoe
Spain	457852	ton	2442108	ton	4355772	ton	546083	ton	379839	ton	0	ton	1383774	ton	277	ktoe	733	ktoe	1307	ktoe
France	3453430	ton	10440000	ton	13410000	ton	n.a.	ton	n.a.	ton	n.a.	ton	3453430	ton	802	ktoe	2505	ktoe	3210	ktoe
Italy	500000	ton	1600	ton	4000000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	150	ktoe	640	ktoe	1600	ktoe
Cyprus	400	ton	500	ton	500	ton	n.a.	ton	n.a.	ton	n.a.	ton	400	ton	0.1	ktoe	8.5	ktoe	0.7	ktoe
Latvia	48.222	ktoe	87247	Unknown	90737	Unknown	n.a.	ktoe	0.824	ktoe	n.a.	ktoe	49.046	ktoe	17164968	thousand litres	n.a.	ktoe	n.a.	ktoe
Lithuania	n.a.	В3	514	kt	1102	kt	n.a.	В3	n.a.	В3	n.a.	m ₃	n.a.	В3	n.a.	ktoe	130	ktoe	238	ktoe
Luxembourg	16600	ton	25000	ton	38000	ton	n.a.	ton	n.a.	ton	n.a.	ton	16600	ton	4.5	ktoe	7	ktoe	14	ktoe
Hungary	68000	ton	1500000	ton	3000000	ton	n.a.	ton	n.a.	ton	n.a.	ton	68000	ton	0.8	PJ/year	15.1	PJ/year	30.14	PJ/year
Malta	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	0	ton	n.a.	ton	0	ktoe	n.a.	ktoe	n.a.	ktoe
Netherlands	50	ktns	1515^{a}	ktns	2745 ^b	ktns	0	ktns	0	ktns	0	ktns	50	ktns	8	ktoe	184 ^c	ktoe	333^{d}	ktoe
Austria	330000	ktoe	1050000	ktoe	1770000	ktoe	270000	ktoe	n.a.	ktoe	n.a.	ktoe	600000	ktoe	325	ktoe	300	ktoe	500	ktoe
Poland	2164	ton	1414	Mg	4056	Mg	9	ton	n.a.	ton	290	ton	550	ton	124	ktoe	405	ktoe	1156	ktoe
Portugal	n.a.	ton	990000	ton	1043000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	281	ktoe	296	ktoe
Romania	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Slovenia	n.a.	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Slovakia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	126.8	ktoe	180	ktoe	194	ktoe
Finland	68930	ton	355000	ton	710000	ton	0	ton	0	ton	0	ton	68930	ton	35.57	ktoe	152	ktoe	301	ktoe
Sweden	258	ktdm	693	ktdm	867	ktdm	307	ktdm	595	ktdm	0	ktdm	1160	ktdm	423	ktoe	288	ktoe	374	ktoe
United Kingdom	3057	ton	3630000	ton	16680000	ton	0	ton	n.a.	ton	n.a.	ton	3057	ton	1	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	30^e	kt	2429^f	kt	5049^{g}	ĸ	h_0	<u>K</u>	33^i	kt	Q.	kt	63 ^k	<u>k</u> t	8995^{l}	ktoe	13496^{m}	ktoe	18435^{n}	ktoe
Various countries have more detail reported on biomass supply in the introduction chapter of this report. See Section 1.5.1 to 1.5.27 and Section 1.8.2 to 1.8.28.								***												
	e more detail re	ported on	biomass supply	in the intro	duction chapter of	of this report.	See Section 1.:	5.1 to 1.5.2	27 and Secti	on 1.8.2 to	1.8.28.									

has been reported here: 60 to 308 ktoe. The table mentions the (calculated) average value. ^d For the Netherlands a datarange has been reported here: 105 to 560 ktoe. The table mentions the (calculated) average value.
^e Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2006 are the following countries: Germany (15331000 ton); Ireland (4068 ton); Spain (457852 ton); France (3453430 ton); Italy (5000000 ton); Cyprus (400 ton); Latvia (48 ktoe); Luxembourg (16600 ton); Hungary (68000 ton); Netherlands (50 ktns); Austria (330000 ktoe); Poland (2164 ton); Finland (68930 ton); Sweden (258 ktdm); United Kingdom (3057 ton) The Netherlands apply the unit 'kton ms' (wet base) in the NREAP, which has been abbreviated in this table as 'ktns'.

Sweden applies the unit 'kton dry matter' in the NREAP, which has been abbreviated in this table as 'ktdm'.

Grow the Netherlands a datarange has been reported here: 452 to 2578 ktns. The table mentions the (calculated) average value. For the Netherlands a datarange has been reported here: 796 to 4693 ktns. The table mentions the (calculated) average value. For the Netherlands a datarange has been reported here: 796 to 4693 ktns. The table mentions the (calculated) average value.

ton); Latvia (87247 Unknown); Luxembourg (25000 ton); Hungary (1500000 ton); Netherlands (452 to 2578 ktms); Austria (1050000 ktoe); Poland (1414 Mg); Portugal (9900000 ton); Finland (3550000 ton); Sweden (693 ktdm); United Kingdom (3630000 ton) on ton in the "amount of domestic resource" for the year 2020 are the following countries: Czech Republic (500 ton); Germany (6903000 ton); Fleland (715400 ton); Greece (176000 ton); Spain (435772 ton); France (13410000 ton); Fleland (715400 ton); Greece (176000 ton); Fleland (715400 ton); Fleland (7154 f Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2015 are the following countries: Czech Republic (400 ton); Germany (22390000 ton); Ireland (472160 ton); Greece (75000 ton); Spain (2442108 ton); France (10440000 ton); Italy (1600 ton); Cyprus (500 (6903000 ton); Ireland (715400 ton); Greece (176000 ton); Spain (4355772 ton); France (13410000 ton); Italy (4000000 ton); Cyprus

⁽⁵⁰⁰ ton); Lavia (90737 Unknown); Luxembourg (38000 ton); Hungary (3000000 ton); Netherlands (796 to 4693 ktns); Austria (1770000 ktoe); Poland (4056 Mg); Portugal (1043000 ton); Finland (710000 ton); Not considered in the EU-27 sum in the 'imported (eu)' for the year 2006 are the following countries: Germany (6362000 ton); Spain (546083 ton); Austria (270000 ktoe); Poland (9 ton); Sweden (307 ktdm); Sweden (867 ktdm); United Kingdom (16680000 ton)

Not considered in the EU-27 sum in the 'imported (non-eu)' for the year 2006 are the following countries: Spain (379839 ton); Latvia (1 ktoe); Sweden (595 ktdm):

Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Poland (290 ton):

⁽⁶⁰⁰⁰⁰⁰ ktoe); Poland (550 ton); Finland (68930 ton); Sweden (1160 ktdm); United Kingdom (3057 ton) Not considered in the EU-27 sum in the 'net amount' for the year 2006 are the following countries: Germany (21693000 ton); Spain (1383774 ton); France (3453430 ton); Cyprus (400 ton); Lavia (49 ktoe); Luxembourg (16600 ton); Hungary (68000 ton); Netherlands (50 ktns); Austria

sum in the 'primary energy production' for the year 2006 are the following countries: Latvia (17164968 thousand litres); Hungary (1 PJ/year); 27 sum in the 'primary energy production' for the year 2015 is: Hungary (15 PJ/year); 7 sum in the 'primary energy production' for the year 2020 is: Hungary (30 PJ/year);

Table 66: Biomass supply from agriculture and fisheries (by-products) for the years 2006 (including import and export), 2015 and 2020.

			Amount of domestic resource	restic resource	6)		Imported (EU)	1 (EU)	Importe	Imported (non-EU)	Exported	Exported (EU/non-EU)	Net amount	vunt			Primary energy production	y production		
	2006	<u>.</u>	2015	15	2020		2006	9	.,	2006		2006	2006	,-	2006	91	2015	15		
Belgium	1805.35	kt	2460.8	kt	5450.9	kt	74.4	kt	0	kt	0	kt	1879.75	kt	57.88	ktoe	218.9	ktoe	540.5	ktoe
Bulgaria	19466	,	125	kt	163	ĸ	0	1	0	t	0	Ţ	19466	ţ	S	ktoe	30	ktoe	39	ktoe
Czech Republic	88	ton	400	ton	200	ton	0	ton	0	ton	0	ton	88	ton	32	ktoe	143	ktoe	179	ktoe
Denmark	1488000	ton	1549000	ton	1549000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	1488000	ton	621	ktoe	705	ktoe
Germany	0006209	ton	0002906	ton	14573500^b	ton	350000	ton	n.a.	ton	n.a.	ton	6429000	ton	699	ktoe	944 _c	ktoe	1517^{d}	ktoe
Estonia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Ireland	211659	ton	537435	ton	1757528	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	135	ktoe	440	ktoe
Greece	508886	ton	10000000	ton	23000000	ton	n.a.	ton	n.a.	ton	n.a.	ton	208886	ton	202	ktoe	1200	ktoe	1500	ktoe
Spain	4773001	ton	14876096	ton	30852890	ton	n.a.	ton	n.a.	ton	141330	ton	4631671	ton	1435	ktoe	1529	ktoe	1933	ktoe
France	1273500	ton	1250000	ton dry	2500000	ton	0	ton	0	ton	45200	ton	1228300	ton	391	ktoe	200	ktoe	1000	ktoe
Italy	n.a.	ton	6480000	ton	16200000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	1960	ktoe	4900	ktoe
Cyprus	2441	ton	2500	ton	2000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	0.903	ktoe	12.7	ktoe	20.2	ktoe
Latvia	5542	ktoe	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Lithuania	n.a.	m3	029	kt	3180	kt	n.a.	m3	n.a.	m ₃	n.a.	m ₃	n.a.	m3	n.a.	ktoe	29	ktoe	76	ktoe
Luxembourg	n.a.	ton	20000	ton	34000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	5.5	ktoe	18	ktoe	25	ktoe
Hungary	234000	ton	2100000	ton	2850000	ton	n.a.	ton	n.a.	ton	n.a.	ton	234000	ton	1.38	PJ/year	12.14	PJ/year	17.17	PJ/year
Malta	280000	ton	280000	ton	280000	ton	0	ton	0	ton	0	ton	280000	ton	0	ktoe	3.97	ktoe	3.97	ktoe
Netherlands	1500	ktns	13709^{e}	ktns	24108^{f}	ktns	350	ktns	0	ktns	0	ktns	1850	ktns	543	ktoe	1009^{9}	ktoe	$^{1698}^{h}$	ktoe
Austria	000009	ktoe	4300000	ktoe	8000000	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	000009	ktoe	12	ktoe	120	ktoe	230	ktoe
Poland	1200	Mg	2690	Mg	7428	Mg	n.a.	Mg	n.a.	Mg	n.a.	Mg	1200	Mg	337	ktoe	1358	ktoe	1773	ktoe
Portugal	27000	ton	00009	ton	88000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	7	ktoe	21	ktoe	30	ktoe
Romania	1900000	ton	3718000	ton	3762000	ton	0	ton	0	ton	0	ton	0	ton	817	ktoe	1586	ktoe	1604	ktoe
Slovenia	n.a.	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Slovakia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	25	ktoe	2000	ktoe	2000	ktoe
Finland	58150	ton	232500	ton	465000	ton	0	ton	0	ton	0	ton	59150	ton	31.86	ktoe	96	ktoe	196	ktoe
Sweden	327	ktdm	100	ktdm	100	ktdm	0	ktdm	0	ktdm	0	ktdm	327	ktdm	194	ktoe	34	ktoe	34	ktoe
United Kingdom	1054208	ton	1175000	ton	1185000	ton	736086	ton	n.a.	ton	n.a.	ton	1790295	ton	208	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	1805^{i}	kt	3256^{j}	kt	8794^{k}	kt	741	kt	u^0	kt	u^0	kt	1880	kt	5473^{p}	ktoe	135689	ktoe	20464^{r}	ktoe

Various countries have more detail reported on biomass supply in the introduction chapter of this report. See Section 1.5.1 to 1.5.27 and Section 1.8.2 to 1.8.28. The Netherlands apply the unit 'kton ns'

Sweden applies the unit 'kton dry matter' in the NREAP, which has been abbreviated in this table as 'ktdm

^a For Germany a datarange has been reported here: 7803000 to 10331000 ton. The table mentions the (calculated) average value. ^b For Germany a datarange has been reported here: 11244000 to 17903000 ton. The table mentions the (calculated) average value. ^c For Germany a datarange has been reported here: 812 to 1075 ktoe. The table mentions the (calculated) average value. ^d For Germany a datarange has been reported here: 1170 to 1863 ktoe. The table mentions the (calculated) average value.

ton); France The table mentions the (calculated) average value. 9 For the Netherlands a datarange has been reported here: 738 to 1279 ktoe. The table mentions the (calculated) average value. h For the Netherlands a datarange has been reported here: 1202 to 2194 ktoe. The table mentions the (calculated) average value. For the Netherlands a datarange has been reported here: 5547 to 21870 kms. The table mentions the (calculated) average value. For the Netherlands a datarange has been reported here: 9145 to 39070 kms.

(1250000 ton dry); Italy (6480000 ton); Cyprus (2500 ton); Luxembourg (20000 ton); Hungary (2100000 ton); Malta (280000 ton); Netherlands (5547 to 21870 kins); Austria (4300000 kroe); Poland (5690 Mg); Portugal (60000 ton); Romania (3718000 ton); Sweden ³ Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2006 are the following countries: Bulgaria (19466 t); Czech Republic (88 ton); Denmark (1488000 ton); Germany (6079000 ton); Ireland (211659 ton); Greece (508886 ton); Spain (4773001 ton); Fanco (1273500 ton); Petherlands (150000 ton); Meherlands (150000 ton); Meherlands (150000 ton); Meherlands (150000 ton); Meherlands (150000 ton); Petherlands (1500000 ton); Petherlands (150000 ton); Petherlands

k Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2020 are the following countries: Czech Republic (500 ton); Denmark (1549000 ton); Germany (11244000 to 17903000 ton); Germania (3762000 ton); Hungary (28500000 ton); Hungary (2850000 ton); Hungary (28500000 ton); Hungary (2850000 ton); Hungary (28500000 ton); Hungary (2850000 ton); Hungary (2850000 ton); Hungary (2850000 ton); Hungary (2850000 ton); Hungary (28500000 ton); Hungary (28500000 ton); Hungary (28500000 ton); Hungary (2850000 to 100 ktdm); United Kingdom (1175000 ton) ktdm); United Kingdom (1185000 ton)

Not considered in the EU-27 sum in the 'imported (eu)' for the year 2006 are the following countries: Germany (350000 ton); Netherlands (350 kms); United Kingdom (736086 ton) not considered in the EU-27 sum in the 'imported (non-eu)' for the year 2006 are the following countries:

Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Spain (141330 ton); France (45200 ton);

On or considered in the EU-27 sum in the 'riet amount' for the year 2006 are the following countries. Bulgaria (19466 0; Czech Republic (88 ton); Germany (6429000 ton); Greece (508886 ton); France (1228300 ton); Hungary (234000 ton); Malta (280000 ton); Malta (2910 ton)

Table 67: Biomass supply from waste (total) for the years 2006 (including import and export), 2015 and 2020.

			Amount of domestic resource	stic resourc	æ		Imported (EU)	(EU)	Impor	Imported (non-EU)	Exported	Exported (EU/non-EU)	Net amount	ınt			Primary energy production	y production		
	2006	6	2015		2020		2006	5		2006		2006	2006		2006	6	2015	15		
Belgium	1857.33	kt	2401	kt	3225.7	kt	152.9	kt	0	kt	0	kt	2010.14	kt	289	ktoe	482.6	ktoe	457	ktoe
Bulgaria	369992	1	950	kī	1250	kt	0	-	0		0		369992	1	59	ktoe	144	ktoe	194	ktoe
Czech Republic	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	76	ktoe	n.a.	ktoe	183	ktoe
Denmark	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	2152000	ton	611	ktoe	683	ktoe
Germany	4321000	ton	8374000	ton	8088000	ton	n.a.	ton	n.a.	ton	n.a.	ton	4012000	ton	692	ktoe	1863	ktoe	2054	ktoe
Estonia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Ireland	27473	ton	788870	ton	1457532	ton	0	ton	0	ton	0	ton	0	ton	n.a.	ktoe	235	ktoe	435	ktoe
Greece	79038904	ton	60000000	ton	60000000	ton	n.a.	ton	n.a.	ton	n.a.	ton	79038904	ton	33	ktoe	35.5	ktoe	35.5	ktoe
Spain	4924307	ton	9698185	ton	12080478	ton	n.a.	ton	n.a.	ton	n.a.	ton	4669907	ton	377.6	ktoe	742.9	ktoe	1006	ktoe
France	8600000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	8600000	ton	1345	ktoe	1836	ktoe	2236	ktoe
Italy	2937500	ton	3216000	ton	8030000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	711	ktoe	940	ktoe	2350	ktoe
Cyprus	1245	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	1245	ton	0.5	ktoe	4.05	ktoe	6.4	ktoe
Latvia	94.2	ktoe	n.a.	ton	n.a.	ton	23.94	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Lithuania	0	п3	n.a.	kt	n.a.	kt	0	В3	0	m3	0	m ₃	0	В3	0	ktoe	n.a.	ktoe	n.a.	ktoe
Luxembourg	n.a.	ton	25000	ton	29000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	15.9	ktoe	23	ktoe	27	ktoe
Hungary	3829000	ton	3600000	ton	n.a.	ton	16000	ton	0	ton	48000	ton	3797000	ton	n.a.	PJ/year	n.a.	PJ/year	n.a.	PJ/year
Malta	175000	ton	169000	ton	173500	ton	n.a.	ton	n.a.	ton	1980	ton	173020	ton	0	ktoe	n.a.	ktoe	n.a.	ktoe
Netherlands	7095	ktns	11345^{a}	ktns	13764^{b}	ktns	0	ktns	0	ktns	0	ktns	7095	ktns	1354	ktoe	2198^{c}	ktoe	2678^{d}	ktoe
Austria	165000	ktoe	370000	ktoe	570000	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	165000	ktoe	52	ktoe	100	ktoe	150	ktoe
Poland	388	ton	4984	Mg	7500	Mg	n.a.	ton	n.a.	ton	n.a.	ton	388	ton	66	ktoe	1086	ktoe	1638	ktoe
Portugal	0	ton	215628	ton	313179	ton	0	ton	0	ton	0	ton	0	ton	0	ktoe	119	ktoe	172	ktoe
Romania	5470000	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	0	ton	1391	ktoe	n.a.	ktoe	n.a.	ktoe
Slovenia	6618	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	6618	ton	0.1	ktoe	n.a.	ktoe	n.a.	ktoe
Slovakia	n.a.	ton	208000	ton	308000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	10	ktoe	52	ktoe	77	ktoe
Finland	n.a.	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	n.a.	ton	137.4	ktoe	160	ktoe	190	ktoe
Sweden	2068	ktdm	2140	ktdm	2782	ktdm	35	ktdm	90	ktdm	0	ktdm	2193	ktdm	764	ktoe	763	ktoe	985	ktoe
United Kingdom	2011267	ton	9055000	ton	12945000	ton	0	ton	n.a.	ton	n.a.	ton	2011267	ton	2196	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	1857^{e}	kt	3351^{f}	kt	4476 ⁹	kt	153^{h}	7	oz.		Ωj	kt	2010^{k}	¥.	9570^{l}	ktoe	11395^{m}	ktoe	15557^{n}	ktoe

arrous countries have more detail reported on biomass supply in the introduction chapter of this report. See Section 1.5.1 to 1.5.27 and Section he Netherlands apply the unit 'kton ns' (wet base) in the NREAP, which has been abbreviated in this table as 'ktns'.

The Netherlands apply the unit 'kton ns' (wet base) in the NREAP, which has been abbreviated in this table as 'ktns' Sweden applies the unit 'kton dry matter' in the NREAP, which has been abbreviated in this table as 'ktdm'.

Not considered in the EU-27 sum in the 'imported (eu)' for the year 2006 are the following countries: Latvia (24 ktoe); Hungary (16000 ton); Sweden (35 ktdm);

red in the EU-27 sum in the 'primary energy production' for the year 2006 are the following countries: Denmark (2152)

^a For the Netherlands a datarange has been reported here: 12344 to 15183 ktns. The table mentions the (calculated) average value. ^c For the Netherlands a datarange has been reported here: 2041 to 2354 ktoe. The table mentions the (calculated) average value. ^d For the Netherlands a datarange has been reported here: 2391 to 2965 ktoe. The table mentions the (calculated) average value. ^d For the Netherlands a datarange has been reported here: 2391 to 2965 ktoe. The table mentions the (calculated) average value. ^e Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2006 are the following countries: Bulgaria (369992 t); Germany (4321000 ton); Ireland (27473 ton); Greece (79038904 ton); Spain (4924307 ton); France (8600000 ton); Italy (2937500 ton); Cyprus (1245 ton); Latvia (94 ktoe); Hungary (3829000 ton); Malta (175000 ton); Netherlands (7095 ktns); Austria (165000 ktoe); Poland (388 ton); Romania (34700000 ton); Sweden (2068 ktdm); United Kingdom (2011267 ton)

⁽¹⁶⁹⁰⁰⁰ ton); Netherlands (10570 to 12119 ktns); Austria (370000 ktoe); Poland (4984 Mg); Portugal (215628 ton); Slovakia (208000 ton); Sweden (2140 ktdm); United Kingdom (9055000 ton)

9 Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2020 are the following countries: Germany (8088000 ton); Ireland (1457532 ton); Greece (600000000 ton); Spain (12080478 ton); Italy (8030000 ton); Luxembourg (29000 ton); Mala (173500 ton); Netherlands (12344 to 15183 kms); Austria (3700000 ktoe); Poland (7500 Mg); Portugal (313179 ton); Slovakia (308000 ton); Sweden (2782 ktdm); United Kingdom (12945000 ton) f Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2015 are the following countries: Germany (3874000 ton); Ireland (788870 ton); Greece (60000000 ton); Spain (9698185 ton); Italy (3216000 ton); Luxembourg (25000 ton); Maltany (36000000 ton); Park (198870 ton); Greece (60000000 ton); Spain (9698185 ton); Italy (3216000 ton); Italy (321600 ton); Italy (321600 ton); Italy (3216000 ton); Italy (321600 to

Not considered in the EU-27 sum in the 'imported (non-eu)' for the year 2006 are the following countries: Sweden (90 ktdm); Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Hungary (48000 ton); Malta (1980 ton); Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Hungary (48000 ton); Malta (1980 ton);

Not considered in the EU-27 sum in the 'net amount' etherlands (7095 ktns); Austria (165000 ktoe); Poland (it' for the year 2006 are the following countries: Bulgaria (369992 t); Germany (4012000 ton); Greece (79038904 ton); Spain (4669907 ton); France (8600000 ton); Cyprus (1245 ton); Hungary (3797000 ton); Malta (173020 ton); (388 ton); Slovenia (6618 ton); Sweden (2193 ktdm); United Kingdom (2011267 ton)

Table 68: Biomass supply from waste (municipal) for the years 2006 (including import and export), 2015 and 2020.

			Amount of domestic resource	stic resour	es		Imported (EU)	d (EU)	Importe	Imported (non-EU)	Exporte	Exported (EU/non-EU)	Net amount	ınt		д.	Primary energy production	y production		
	2006	5	2015		2020		2006	9(2006		2006	2006		2006	9	2015	15		
Belgium	1528.5	kt	1751.6	kt	2263.7	kt	152.9	kt	0	kt	0	kt	1681.3	kt	232.51	ktoe	334.7	ktoe	290.8	ktoe
Bulgaria	0	Ţ	400	kt	550	k	0	t	0	t	0	t	0	t	0	ktoe	80	ktoe	110	ktoe
Czech Republic	235	ton	382	ton	999	ton	0	ton	0	ton	0	ton	235	ton	*	ktoe	17	ktoe	166	ktoe
Denmark	2152000	ton	2152000	ton	2152000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	2152000	ton	611	ktoe	683	ktoe
Germany	3457000	ton	5537000	ton	4327000	ton	n.a.	ton	n.a.	ton	n.a.	ton	3457000	ton	477	ktoe	764	ktoe	597	ktoe
Estonia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Ireland	0	ton	730000	ton	1359416	ton	0	ton	0	ton	0	ton	0	ton	n.a.	ktoe	220	ktoe	410	ktoe
Greece	5800000	ton	00000009	ton	00000009	ton	n.a.	ton	n.a.	ton	n.a.	ton	55476426	ton	23.3	ktoe	25	ktoe	25	ktoe
Spain	4653471	ton	6310422	ton	6693515	ton	0	ton	0	ton	0	ton	4653471	ton	366.9	ktoe	532.3	ktoe	726	ktoe
France	6622000	ton	5500000^a	ton	5500000^{b}	ton	n.a.	ton	n.a.	ton	n.a.	ton	6622000	ton	1291	ktoe	1336^{c}	ktoe	1336^{d}	ktoe
Italy	2437500	ton	2610000	ton	6520000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	561	ktoe	720	ktoe	1800	ktoe
Cyprus	n.a.	ton	8000_{e}	ton	12500^{f}	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	49	ktoe	49	ktoe
Latvia	9.62	ktoe	n.a.	ton	n.a.	ton	17.64	ktoe	n.a.	ktoe	n.a.	ktoe	1420.4	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Lithuania	n.a.	m3	n.a.	kt	n.a.	kt	n.a.	m ₃	n.a.	m ₃	n.a.	m ₃	n.a.	m ₃	n.a.	ktoe	55	ktoe	70	ktoe
Luxempourg	52900	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	52900	ton	14.8	ktoe	n.a.	ktoe	n.a.	ktoe
Hungary	1969000	ton	2100000	ton	2100000	ton	0	ton	0	ton	0	ton	1969000	ton	n.a.	PJ/year	n.a.	PJ/year	n.a.	PJ/year
Malta	167000	ton	160000	ton	164000	ton	n.a.	ton	n.a.	ton	1980	ton	165020	ton	0	ktoe	25.5	ktoe	25.08	ktoe
Netherlands	100	ktns	2437^{j}	ktns	3679 ^k	ktns	0	ktns	0	ktns	0	ktns	100	ktns	29	ktoe	2699	ktoe	1017^{m}	ktoe
Austria	115000	ktoe	240000	ktoe	360000	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	115000	ktoe	40	ktoe	70	ktoe	100	ktoe
Poland	68	Mg	4339	Mg	6373	Mg	n.a.	Mg	n.a.	Mg	n.a.	Mg	68	Mg	19	ktoe	932	ktoe	1369	ktoe
Portugal	537000	ton	215628	Nm3	313179	Nm3	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	66	ktoe	119	ktoe	172	ktoe
Romania	4210000	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	0	ton	1095	ktoe	n.a.	ktoe	n.a.	ktoe
Slovenia	9989	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	9989	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Slovakia	n.a.	ton	200000	ton	300000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	∞	ktoe	20	ktoe	75	ktoe
Finland	n.a.	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	n.a.	ton	127.4	ktoe	n.a.	ktoe	n.a.	ktoe
Sweden	918	ktdm	1353	ktdm	1768	ktdm	14	ktdm	36	ktdm	0	ktdm	896	ktdm	357	ktoe	493	ktoe	637	ktoe
United Kingdom	1954467	ton	2325000	ton	2660000	ton	0	ton	n.a.	ton	n.a.	ton	1954467	ton	1977	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	1529^{n}	kt	21520	kt	2814^{p}	kt	1534	kt	0^r	kt	s^0	kt	1681^{t}	kt	n0189	ktoe	7083^{v}	ktoe	9614^{w}	ktoe

Various countries have more detail reported on biomass supply in the introduction chapter of this report. See Section 1.5.1 to 1.5.27 and Section 1.8.2 to 1.8.28

The Netherlands apply the unit 'kton ns' (wet base) in the NREAP, which has been abbreviated in this table as 'kms' Sweden applies the unit 'kton dry matter' in the NREAP, which has been abbreviated in this table as 'ktdm'.

^a For France a datarange has been reported here: 5000000 to 6000000 ton. The table mentions the (calculated) average value. ^b For France a datarange has been reported here: 5000000 to 6000000 ton. The table mentions the (calculated) average value. ^c For France a datarange has been reported here: 5000000 to 6000000 ton. The table mentions the (calculated) average value. ^c For France a datarange has been reported here: 5000000 to 6000000 ton. The table mentions the (calculated) average value. ^c For France a datarange has been reported here: 5000000 to 6000000 ton. The table mentions the (calculated) average value. ^c For France a datarange has been reported here: 5000000 to 6000000 ton. The table mentions the (calculated) average value. ^c For France a datarange has been reported here: 5000000 ton. The table mentions the (calculated) average value. ^c For France a datarange has been reported here: 5000000 ton. The table mentions the calculated has been reported here: 5000000 ton. The table mentions the calculated has been reported here: 5000000 ton. The table mentions the calculated has been reported here: 5000000 ton. The table mentions the calculated has been reported here: 5000000 ton. The table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions the calculated has been reported here. For table mentions have the calculated here. For table mentions have the calculated has been reported here. For table mentions have reported here: 1011 to 1661 ktoe. The table mentions the (calculated) average value. ^d For France a datarange has been reported here: 1011 to 1661 ktoe. The table mentions the (calculated) average value.

f For Cyprus a datarange has been reported here: 10000 to 15000 ton. The table mentions the (calculated) average value. 9 For Cyprus a datarange has been reported here: For Cyprus a datarange has been reported here: 7000 to 9000 ton. The table mentions the (calculated) average value.

For the Netherlands in Template Table 7 category C1 also specifies for 2006 an additional amount of landfill gas (1.9 TJ) which has not been covered in the subtotal in ton ns (wet basis). 3.1 to 4.0 ktoe. The table mentions the (calculated) average value. h For Cyprus a datarange has been reported here: 4.5 to 6.7 ktoe. The table mentions the (calculated) average value.

³ For the Netherlands a datarange has been reported here: 2264 to 2669 kms. The table mentions the (calculated) average value. ¹⁸ For the Netherlands a datarange has been reported here: 3253 to 4105 kms. The table mentions the (calculated) average value. ²⁸ For the Netherlands a datarange has been reported here: 610 in 780 kms. The table mentions the (calculated) average value. ²⁹ For the Netherlands a datarange has been reported here: 610 in 780 kms. The table mentions the (calculated) average value. ²⁹ For the Netherlands a datarange has been reported here: 610 in 780 kms. Stocked by a domestic resource for the year 2006 are the Following countries. (255 cm); Dammark (2155 cm); Dammark (2155 cm); Dammark (2150000 ton); Stocked cm); Sayade (4552000 ton); Ratio (457000 ton); Parmark (2152000 ton); Dammark (2152000 ton); Germany (5537000 ton); Germany (553

6000000 ton); Italy (2610000 ton); Cyprus (7000 to 9000 ton); Hungary (2100000 ton); Malta (160000 ton); Malta (160000 ton); Malta (160000 ton); Detherlands (2204 to 2669 ktns); Austria (240000 ktoe); Poland (4339 Mg); Portugal (215628 Nm3); Slovaskia (200000 ton); Sweden (1353 ktdm); United Kingdom (2225000 ton) France (5000000 ton); France (5000000 ton); Prance (5000000 ton); Prance (5000000 ton); Malta (164000 ton); Malta (164000 ton); Malta (164000 ton); Netherlands (3253 to 4105 ktns); Austria (360000 ktoe); Poland (6373 Mg); Portugal (31179 Nm3); Slovaskia (300000 ton); Sweden (1768 ktdm); United Kingdom (26600000 ton)

Not considered in the EU-27 sum in the 'imported (eu)' for the year 2006 are the following countries: Latvia (18 ktoe); Sweden (14 ktdm); Not considered in the EU-27 sum in the 'imported (non-eu)' for the year 2006 are the following countries: Sweden (36 ktdm);

Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Malta (1980 ton); General School on); Malta (165020 ton); Netherlands (100 ktns); Austria (115000 ktoe); Poland (89 Mg); Slovenia (6366 ton); Sweden (968 ktdm); United Kingdom (1954467 ton) Not considered in the EU-27 sum in the 'primary energy production' for the year 2006 is: Denmark (2152000 ton);

Table 69: Biomass supply from waste (industrial) for the years 2006 (including import and export), 2015 and 2020

	2006		2015		2020		2006	6		2006	2	2006	2006		2006	6	2015	5		
Belgium 2	248.66	kt	558.3	kt	868	kt	0	kt	0	kt	0	kt	248.66	kt	46.38	ktoe	138.4	ktoe	155.8	ktoe
	369992	-	375	KT	500	kt	0	1	0		0		369992	1	59	ktoe	60	ktoe	80	ktoe
epublic	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	22	ktoe	n.a.	ktoe	17	ktoe
Denmark	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	0	ton	0	ktoe	0	ktoe
	864000	ton	2837000	ton	3761000	ton	61000	ton	n.a.	ton	370000	ton	555000	ton	215	ktoe	1099	ktoe	1457	ktoe
	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Ireland	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Greece	n.a.	ton	0	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	0	ktoe	0	ktoe
	16436	ton	547763	ton	626963	ton	n.a.	ton	n.a.	ton	n.a.	ton	16436	ton	5.8	ktoe	158	ktoe	194	ktoe
	n.a.	ton	1500000	ton	2700000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	500	ktoe	900	ktoe
	500000	ton	606000	ton	1510000	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	150	ktoe	220	ktoe	550	ktoe
IS	n.a.	ton	800	ton	1400	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	0.5	ktoe	0.8	ktoe
Latvia	14.6	ktoe	n.a.	ton	n.a.	ton	6.3	ktoe	n.a.	ktoe	5.94	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Lithuania	n.a.	В3	n.a.	ĸ	n.a.	kt	n.a.	п3	n.a.	m ³	n.a.	m3	n.a.	ш3	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Luxembourg	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
_	860000	ton	1500000	ton	n.a.	ton	16000	ton	0	ton	48000	ton	1828000	ton	n.a.	PJ/year	n.a.	PJ/year	n.a.	PJ/year
Malta	8260	ton	9000	ton	9500	ton	n.a.	ton	n.a.	ton	n.a.	ton	8260	ton	0	ktoe	n.a.	ktoe	n.a.	ktoe
Netherlands	6365	ktns	7860^{a}	ktns	8689^{b}	ktns	0	ktns	0	ktns	0	ktns	6365	ktns	1265	ktoe	1466 ^c	ktoe	1612^{d}	ktoe
Austria	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Poland	84	Mg	645	Mg	1127	Mg	n.a.	Mg	n.a.	Mg	n.a.	Mg	84	Mg	5	ktoe	154	ktoe	269	ktoe
Portugal	n.a.	ton	0	Nm3	0	Nm3	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	0	ktoe	0	ktoe
	910000	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	0	ton	236	ktoe	n.a.	ktoe	n.a.	ktoe
	252	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	252	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Slovakia	8000	ton	8000	ton	8000	ton	n.a.	ton	n.a.	ton	1000	ton	7000	ton	2	ktoe	2	ktoe	2	ktoe
Finland	n.a.	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Sweden	873	ktdm	787	ktdm	1014	ktdm	21	ktdm	54	ktdm	0	ktdm	948	ktdm	329	ktoe	270	ktoe	348	ktoe
United Kingdom 3	33440	ton	6730000	ton	10285000	ton	0	ton	n.a.	ton	n.a.	ton	33440	ton	15	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	249^e	kt	933f	kt	1368 ⁹	kt	h	kt	0^i	kt	0^{j}	kt	249^{k}	kt	2350^l	ktoe	4067^{m}	ktoe	5586^{n}	ktoe

The Netherlands apply the unit 'Kton ms' (wet base) in the NREAP, which has been abbreviated in this table as 'ktms'.

Sweden applies the unit 'Kton dry matter' in the NREAP, which has been abbreviated in this table as 'kdm'.

Growthe Netherlands a datarange has been reported here: 7695 to 9682 kms. The table mentions the (calculated) average value. Growthe Netherlands a datarange has been reported here: 7695 to 9682 kms. The table mentions the (calculated) average value. Growthe Netherlands a datarange has been reported here: 7695 to 9682 kms. The table mentions the (calculated) average value. has been reported here: 1394 to 1337 ktoe. The table mentions the (calculated) average value. ^d For the Netherlands a datarange has been reported here: 1481 to 1743 ktoe. ^e Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2006 are the following countries: Bulgaria (369992 t); Germany (864000 ton); Spain The table mentions (16436 ton); Italy (s the (calculated) average (500000 ton); Latvia (151 (6365 ktns);

J Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2015 are the following countries: Germany (2837000 ton); Spain (547763 ton); France (1500000 ton); Haly (66000 ton); Cyprus (800 ton); Hungary (1500000 ton); Malta (9000 ton); Netherlands (7318 ton); France (1500000 ton); Hungary (1500000 ton); Hungary (1500000 ton); Malta (9000 ton); Prance (1500000 ton); Hungary (1500000 ton); Hungary (1500000 ton); Malta (9000 ton); Malta (9000 ton); Hungary (1500000 ton); Malta (9000 ton); M

 $^{^9}$ Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2 (1127 Mg); Slovakia (8000 ton); Sweden (1014 ktdm); United Kingdom (10285000 ton) 8402 ktns); Poland (645 Mg); Slovakia (8000 ton); Sweden (787 ktdm); United Kingdom (6730000 ton) EU-27 sum in the 'amount of domestic resource' for the year 2020 are the following countries: Germany (3761000 ton); Spain (62963 ton); France (2700000 ton); Italy (1510000 ton); Cyprus (1400 ton); Malta (9500 ton); Neterlands (7695 to 9682 kms); Poland

the year 2006 are the following countries: Germany (61000 ton); Latvia (6 ktoe); Hungary (16000 ton); Sweden (21 ktdm)

Not considered in the EU-27 sum in the 'imported (eu)' for Not considered in the EU-27 sum in the 'imported (non-eu)' sum in the 'imported (non-eu)' for the year 2006 are the following countries: Sweden (54 ktdm)

sum in the 'exported (eu/non-eu)' for the ! year 2006 are the following countries: Germany (370000 ton); Latvia (6 ktoe); Hungary (48000 ton); Slovakia (1000 ton)

for the year 2006 are the following countries: Bulgaria (369992 t); Germany (555000 ton); Spain (16436 ton); Hungary (1828000 ton); Malta (8260 ton); Netherlands (6365 kms); Poland (84 Mg); Slovenia (252 ton); Slovakia (7000 ton); Malta (8260 ton); Netherlands (6365 kms); Poland (84 Mg); Slovenia (252 ton); Slovakia (7000 ton); Malta (8260 ton); Malta

Table 70: Biomass supply from waste (sewage sludge) for the years 2006 (including import and export), 2015 and 2020.

			Amonn	Amount of domestic resource	9		Imported (EU)	d (EU)	Importe	Imported (non-EU)	Exported	Exported (EU/non-EU)	Net amount	ount			Primary energy production	ergy produ	ction	
	20.	2006		2015	(4	2020	2006	90		2006		2006	2006	9	(1	2006	(4	2015		
Belgium	80.17	kt	91.1	kt	94	kt	0	kt	0	kt	0	kt	80.17	kt	10.09	ktoe	9.5	ktoe	10.4	ktoe
Bulgaria	0	,	175	kt	200	kt	0	t	0	t	0	ţ	0	t	0	ktoe	4	ktoe	4	ktoe
Czech Republic	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Denmark	38	Mm^3	38	Mm^3	38	M m ³	n.a.	Mm^3	n.a.	$M m^3$	n.a.	Mm^3	n.a.	Mm^3	38	$M m^3$	21	ktoe	21	ktoe
Germany	3217000	ton	3435000	ton	3435000		220000	ton	n.a.	ton	2000	ton	3435000	ton	263	ktoe	263	ktoe	263	ktoe
Estonia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	1.5	ton	n.a.	ktoe	n.a.	ktoe	2	ktoe
Ireland	27473	ton	58870	ton	98116	ton	0	ton	0	ton	0	ton	0	ton	n.a.	ktoe	15	ktoe	25	ktoe
Greece	23562478	ton	26000000	ton	26000000	ton	n.a.	ton	n.a.	ton	n.a.	ton	23562478	ton	9.6	ktoe	10.5	ktoe	10.5	ktoe
Spain	254400	ton	2840000	ton	4760000	ton	n.a.	ton	n.a.	ton	n.a.	ton	254400	ton	4.9	ktoe	52.6	ktoe	98	ktoe
France	1000000	ton	1000000	ton	1000000	ton	n.a.	ton	n.a.	ton	n.a.	ton	1000000	ton	54	ktoe	54	ktoe	54	ktoe
Italy	n.a.	ton	0	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	0	ktoe	0	ktoe
Cyprus	1245	ton	8000^{α}	ton	16500^{b}	ton	n.a.	ton	n.a.	ton	n.a.	ton	1245	ton	0.5	ktoe	3^c	ktoe	2q	ktoe
Latvia	23.9	ktoe	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Lithuania	n.a.	m ₃	n.a.	kt	n.a.	kt	n.a.	m ₃	n.a.	m ₃	n.a.	$^{\mathrm{m}_3}$	n.a.	m ₃	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Luxembourg	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	1.1	ktoe	n.a.	ktoe	n.a.	ktoe
Hungary	261000	ton	499000	ton	n.a.	ton	0	ton	0	ton	0	ton	261000	ton	n.a.	PJ/year	n.a.	PJ/yea	n.a.	PJ/yea
Malta	0	ton	5700000	Nm3	5700000	Nm3	0	ton	0	ton	0	ton	0	ton	0	ktoe	1.46	ktoe	1.46	ktoe
Netherlands	630	ktns	1048	ktns	1396	ktns	0	ktns	0	ktns	0	ktns	630	ktns	22	ktoe	37	ktoe	49	ktoe
Austria	20000	ktoe	130000	ktoe	210000	ktoe	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe	20000	ktoe	12	ktoe	30	ktoe	50	ktoe
Poland	1064.7	Mg s.m	340	Mg	6285	Mg	n.a.	Mg s.m	n.a.	Mg s.m	n.a.	Mg s.m	1064.7	Mg s.m	203	ktoe	65	ktoe	120	ktoe
Portugal	n.a.	ton	79753	Nm3	115833	Nm3	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	4	ktoe	49	ktoe
Romania	350000	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	0	ton	9	ktoe	n.a.	ktoe	n.a.	ktoe
Slovenia	n.a.	ton	0	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ktoe	n.a.	ktoe	n.a.	ktoe
Slovakia	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	n.a.	ton	10	ktoe	12	ktoe	13	ktoe
Finland	n.a.	ton	n.a.	ton	n.a.	ton	0	ton	0	ton	0	ton	n.a.	ton	10	ktoe	n.a.	ktoe	n.a.	ktoe
Sweden	276	ktdm	576	ktdm	191	ktdm	0	ktdm	0	ktdm	0	ktdm	276	ktdm	78	ktoe	163	ktoe	217	ktoe
United Kingdom	23360	ton	1500	M mCH04 m3	2500	M mCH04 m3	0	ton	n.a.	ton	n.a.	ton	23360	ton	204	ktoe	n.a.	ktoe	n.a.	ktoe
All Member States	80 _e	kt	266 ^f	kt	2949	kt	u^0	kt	0^i	kt	\dot{v}_0	kt	80^{k}	kt	942 ^l	ktoe	785m	ktoe	995 ⁿ	ktoe

Various countries have more detail reported on biomass supply in the introduction chapter of this report. See Section 1.5.1 to 1.5.27 and Section 1.8.2 to 1.8.28

The Netherlands apply the unit 'kton ns' (wet base) in the NREAP, which has been abbreviated in this table as 'ktns' Sweden applies the unit 'kton dry matter' in the NREAP, which has been abbreviated in this table as 'ktdm'.

2.2 to 28 ktoe. The table mentions the (calculated) average value. ^d For Cyprus a datarange has been reported here: 46 to 5.6 ktoe. The table mentions the (calculated) average value.
^e Not considered in the EU-27 sum in the 'amount of domestic resource' for the year 2006 are the following countries: Demmark (38 million m3); Germany (3217000 ton); Ireland (27473 ton); Greece (23562478 ton); Spain (254400 ton); France (10000000 ton); Cyprus (1245 ton); Latvia (24 ton); Latvia (24 ton); Austria (50000 ktoe); Poland (1065 Mg s.m); Romania (350000 ton); Sweden (276 ktdm); United Kingdom (23360 ton) ^a For Cyprus a datarange has been reported here: 7000 to 9000 ton. The table mentions the (calculated) average value. ^b For Cyprus a datarange has been reported here: 15000 to 18000 ton. The table mentions the (calculated) average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated) average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated average value. ^c For Cyprus a datarange has been reported here: 30000 ton. The table mentions the calculated average value. ^c For Cyprus and a datarange has been reported by the calculated average value. ^c For Cyprus and a data average value average va

In the EU-27 sum in the EU-27 sum in the 'amount of domestic resource' for the year 2015 are the following countries: Denmark (38 million m3); Germany (3435000 ton); Ireland (58870 ton); Greece (26000000 ton); France (10000000 ton); Cyprus (70000 ton) (20000 ton); Cyprus (70000 ton); Cyprus (100000 ton); Prance (1000000 ton); Prance (1000000 ton); Prance (1000000 ton); Cyprus (15000 ton); Cyprus (15000

Not considered in the EU-27 sum in the 'imported (eu)' for the year 2006 are the following countries: Germany (220000 ton);

Not considered in the EU-27 sum in the 'imported (non-eu)' for the year 2006 are the following countries:

Not considered in the EU-27 sum in the 'exported (eu/non-eu)' for the year 2006 are the following countries: Germany (2000 ton);

Not considered in the EU-27 sum in the 'net amount' for the year 2006 are the following countries: Germany (3435000 ton); Greece (23562478 ton); Greece (23562478 ton); France (1000000 ton); Cyprus (1245 ton); Hungary (261000 ton); Netherlands (630 ktns); Austria

Not considered in the EU-27 sum in the 'primary energy production' for the year 2006 is: Denmark (38 million m3);

Table 71: Land used in the year 2006 [ha] for short rotation trees (willows, poplars) and for other energy crops such as grasses (reed canary grass, switch grass, Miscanthus) and sorghum. In line with NREAP Template Table 8 data are only available for the year 2006, not for other years

	Land for short rotation trees	Land for other energy crops	Unit
Belgium	0	0	ha
Bulgaria	0	0	ha
Czech Republic	n.a.	n.a.	ha
Denmark	1000	50	ha
Germany	1200	1100	ha
Estonia	n.a.	n.a.	ha
Ireland	63	617	ha
Greece	0	0	ha
Spain	n.a.	n.a.	ha
France	192.3	0	ha
Italy	5105	n.a.	ha
Cyprus	n.a.	n.a.	ha
Latvia	n.a.	$>200^{a}$	ha
Lithuania	300	0	ha
Luxembourg	0	0	ha
Hungary	401	2122	ha
Malta	0	0	ha
Netherlands	0	10000	ha
Austria	800	33000	ha
Poland	6565.8	250.2	ha
Portugal	0	236	ha
Romania	20	n.a.	ha
Slovenia	0	2980	ha
Slovakia	150	200	ha
Finland	n.a.	n.a.	ha
Sweden	14000	$< 1000^b$	ha
United Kingdom	4196	5316	ha
All Member States (total)	33993.1	57071.2 ^{a,b}	ha

^a For calculating the 'total land use for other energy crops' for Latvia a value of 200 [ha] has been assumed.

^b For calculating the 'total land use for other energy crops' for Sweden a value of 1000 [ha] has been assumed.

RES excess and deficit for flexible mechanisms

Table 72: Estimated excess in NREAP [ktoe] for use with flexible mechanisms

7663.07		14164.13	11758	16031.37	13460	17074.64	14091	15414.06	13157	3355	All Member States (total)
n.a.		n.a.	0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	United Kingdom
486		421	389	356	324	291	259	227	194	162	Sweden
0		0	0	0	0	0	0	0	0	0	Finland
143		349	269	364	305	313	228	240	181	n.a.	Slovakia
0		0	0	0	0	0	0	0	0	0	Slovenia
0		0	0	0	0	0	0	0	0	0	Romania
n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Portugal
n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Poland
0		0	0	0	0	0	0	0	0	0	Austria
0		0	0	0	0	0	0	0	0	0	Netherlands
1.07		16.13	n.a.	8.37	n.a.	7.64	n.a.	2.06	n.a.	n.a.	Malta
325		464	516	274	280	267	323	283	547	0	Hungary
0		0	0	0	0	0	0	0	0	0	Luxembourg
61		235	231	182	178	126	123	37	36	0	Lithuania
n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Latvia
0		34	57	42	30	46	34	39	33	36	Cyprus
0		465	1092	1511	1843	2143	2220	2157	2077	2839	Italy
0		0	0	0	0	0	0	0	0	0	France
2649		4166	3180	4296	3379	4163	3056	3596	2986	n.a.	Spain
529		743	737	842	856	812	686	513	408	257	Greece
0		136	136	211	211	233	233	168	168	0	Ireland
<u>-</u> 1		69	49	83	74	109	97	85	50	n.a.	Estonia
3065		5976	4130	6453	4761	7105	5507	7065	5703	n.a.	Germany
63		619	552	928	833	1106	1123	834	694	n.a.	Denmark
n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Czech Republic
341		471	420	481	386	353	202	168	80	61	Bulgaria
n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	Belgium
2020	2019	2018	2017	2016	2015	2014	2013	2012	2011	2010	
								ç	,		

Table 73: Estimated deficit in NREAP [ktoe] for use with flexible mechanisms

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Belgium	n.a.										
Bulgaria	0	0	0	0	0	0	0	0	0	0	0
Czech Republic	n.a.										
Denmark	n.a.	0	0	0	0	0	0	0	0	n.a.	0
Germany	n.a.	0	0	0	0	0	0	0	0	n.a.	0
Estonia	n.a.										
Ireland	0	0	0	0	0	0	0	0	0	0	0
Greece	n.a.										
Spain	n.a.	0	0	0	0	0	0	0	0	n.a.	0
France	0	0	0	0	0	0	0	0	0	0	0
Italy	0	0	0	0	0	0	0	0	0	284	1127
Cyprus	n.a.										
Latvia	n.a.										
Lithuania	0	0	0	0	0	0	0	0	0	0	0
Luxembourg	0	45	23	38	10	45	22	75	39	99	93
Hungary	0	0	0	0	0	0	0	0	0	0	0
Malta	n.a.	n.a.	0								
Netherlands	0	0	0	0	0	0	0	0	0	0	0
Austria	0	0	0	0	0	0	0	0	0	0	0
Poland	n.a.										
Portugal	n.a.										
Romania	0	0	0	0	0	0	0	0	0	0	0
Slovenia	0	0	0	0	0	0	0	0	0	0	0
Slovakia	n.a.										
Finland	0	0	0	0	0	0	0	0	0	0	0
Sweden	n.a.										
United Kingdom	n.a.	100	n.a.	200	n.a.	300	n.a.	n.a.	n.a.	n.a.	0
All Member States (total)	0	145	23	238	10	345	22	75	39	350	1220

Hydropower

Figure 3: Projected total hydropower electric capacity [GW] for the period 2005 - 2020, all capacity ranges excluding pumped storage

Table 74: Projected total hydropower electric capacity [MW] for the period 2005 - 2020, all capacity ranges excluding pumped storage

	2005	2010	2015	2020	2020
	[MW]	[MW]	[MW]	[MW]	[%]
Belgium	108.2	112.3	120.1	140	0
Bulgaria	2915	2979	3094	3288	2
Czech Republic	1020	1047	1099	1125	1
Denmark	10	10	10	10	0
Germany	4329	4052	4165	4309	3
Estonia	5	7	8	8	0
Ireland	234	234	234	234	0
Greece	3107	3237	3615	4531	3
Spain	18220	18687	20049	22362	16
France	25349	25800	27050	28300	20
Italy	15466	16580	17190	17800	13
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.
Latvia	1536	1536	1550	1550	1
Lithuania	888	887	893	901	1
Luxembourg	34	38	38	44	0
Hungary	n.a.	51	52	66	0
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	37	47	68	68	0
Austria	7907	8235	8423	8997	6
Poland	915	952	1002	1152	1
Portugal	4816	4934	7017	9548	7
Romania	6289	6413	7287	7729	6
Slovenia	981	1071	1193	1354	1
Slovakia	1597	1622	1732	1812	1
Finland	3040	3050	3050	3100	2
Sweden	16302	16307	16312	16317	12
United Kingdom	4289	4500	4710	4920	4
All Member States (total)	119394.2	122388.3	129961.1	139665	100

More information on subcategories for hydropower capacity is presented in Table 76 on page 100.

See Table 77 on page 101 for corresponding hydropower electricity production data.

Country information: for various countries, *Total hydropower capacity* in the NREAP excludes pumped storage capacity. This is the case for Germany, Greece, Spain, Italy, Luxembourg, Austria, Potugal and Sweden.

Figure 4: Calculated average annual growth for electric capacity from hydropower [%/year] for four periods, all capacity ranges excluding pumped storage

Table 75: Calculated average annual growth for electric capacity from hydropower [%/year] for four periods, all capacity ranges excluding pumped storage

J 1 ,	1 , 0	01 1	0	
	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	0.7	1.4	3.1	2.2
Bulgaria	0.4	0.8	1.2	1.0
Czech Republic	0.5	1.0	0.5	0.7
Denmark	0.0	0.0	0.0	0.0
Germany	-1.3	0.6	0.7	0.6
Estonia	7.0	2.7	0.0	1.3
Ireland	0.0	0.0	0.0	0.0
Greece	0.8	2.2	4.6	3.4
Spain	0.5	1.4	2.2	1.8
France	0.4	1.0	0.9	0.9
Italy	1.4	0.7	0.7	0.7
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	0.0	0.2	0.0	0.1
Lithuania	0.0	0.1	0.2	0.2
Luxembourg	2.2	0.0	3.0	1.5
Hungary	n.a.	0.4	4.9	2.6
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	4.9	7.7	0.0	3.8
Austria	0.8	0.5	1.3	0.9
Poland	0.8	1.0	2.8	1.9
Portugal	0.5	7.3	6.4	6.8
Romania	0.4	2.6	1.2	1.9
Slovenia	1.8	2.2	2.6	2.4
Slovakia	0.3	1.3	0.9	1.1
Finland	0.1	0.0	0.3	0.2
Sweden	0.0	0.0	0.0	0.0
United Kingdom	1.0	0.9	0.9	0.9
All Member States (average)	0.5	1.2	1.5	1.3

Table 76: Projected hydropower electric capacity [MW] for the period 2005 - 2020, broken down into capacity ranges and pumped storage capacity

		Hydropower < 1 MW	< 1 MW		Ну	Hydropower 1 MW – 10 MW	IW – 10 MW	7		Hydropower >10 MW	r >10 MW		Pu	Pumped storage hydropower	e hydropowe	ı		Total hydropower	power	
	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]
Belgium	7.2	7.4	8	9.3	50.2	52.1	55.8	65	50.8	52.7	56.4	65.7	0	0	0	0	108.2	112.3	120.1	140
Bulgaria	29	49	48	50	170	214	250	272	1852	1852	1932	2102	864	864	864	864	2915	2979	3094	3288
Czech Republic	123	162	191	194	154	142	147	147	743	743	743	743	n.a.	n.a.	n.a.	n.a.	1020	1047	1099	1125
Denmark	0	0	0	0	10	10	10	10	0	0	0	0	0	0	0	0	10	10	10	10
Germany	641	507	534	564	1073	987	1012	1043	2615	2558	2620	2702	4012	6494	6494	7900	4329	4052	4165	4309
Estonia	4	6	7	7	_	_	_	_	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	300	5	7	∞	~
Ireland	18	18	18	18	20	20	20	20	196	196	196	196	292	292	292	292	234	234	234	234
Greece	26	29	34	39	63	154	185	216	3018	3054	3396	4276	700	700	700	1580	3107	3237	3615	4531
Spain	239	242	253	268	1534	1603	1764	1917	16447	16842	18032	20177	2727	2546	3700	5700	18220	18687	20049	22362
France	433	441	462	483	1618	1647	1727	1807	18995	19333	20269	21206	4303	4800	5800	6800	25349	25800	27050	28300
Italy	391	444	547	650	1947	2250	2750	3250	13128	13886	13893	13900	1334	2399	2499	2600	15466	16580	17190	17800
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Latvia	24	24	25	27	1	_	_	_	1511	1511	1524	1522	n.a.	n.a.	n.a.	n.a.	1536	1536	1550	1550
Lithuania	n.a.	n.a.	n.a.	n.a.	27	26	32	40	101	101	101	101	760	760	760	760	888	887	893	901
Luxembourg	2	2	2	သ	32	36	36	41	0	0	0	0	1100	1100	1300	1300	34	38	38	4
Hungary	n.a.	သ	4	6	n.a.	9	9	22	n.a.	39	39	39	n.a.	0	0	0	n.a.	51	52	66
Malta	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	2	2	2	2	21	21	35	45	45	45	0	0	0	0	37	47	68	68
Austria	308	455	465	497	692	726	743	794	6907	7053	7215	7707	3929	4285	4285	4285	7907	8235	8423	8997
Poland	72	102	122	142	174	178	208	238	669	672	672	772	0	0	0	0	915	952	1002	1152
Portugal	n.a.	n.a.	n.a.	n.a.	323	410	550	750	4493	4524	6467	8798	537	1036	2454	4302	4816	4934	7017	9548
Romania	63	63	90	109	262	324	547	620	5964	6026	6650	7000	0	0	0	0	6289	6413	7287	7729
Slovenia	108	118	120	120	37	37	52	57	836	916	1021	1176	0	0	0	0	981	1071	1193	1354
Slovakia	16	25	40	60	46	55	82	122	1535	1542	1610	1630	0	0	0	0	1597	1622	1732	1812
Finland	30	30	30	30	280	280	280	280	2730	2750	2750	2790	0	0	0	0	3040	3050	3050	3100
Sweden	140	140	140	140	765	765	765	765	15397	15402	15407	15412	43	43	43	43	16302	16307	16312	16317
United Kingdom	56	n.a.	n.a.	n.a.	102	n.a.	n.a.	n.a.	4131	n.a.	n.a.	n.a.	2788	2800	2800	2800	4289	4500	4710	4920
All Member States (total)	2730.2	2867.4	3142	3418.3	9383.2	9929.1	11247.8	12499	101353.8	99097.7	104638.4	112359.7	23389	28119	31991	39526	119394.2	122388.3	129961.1	139665
			:	-		•	•	•												

See Table 79 on page 103 for corresponding hydropower electricity production data.

Country information: for various countries, Total hydropower capacity in the NREAP excludes pumped storage capacity. This is the case for Germany, Greece, Spain, Italy, Luxembourg, Austria, Potugal and Sweden

A breakdown in capacity ranges has not been provided for Bulgaria, the Netherlands and the United Kingdom. Therefore, the sum of all categories is lower than the value for All Member States

Figure 5: Projected total hydropower electricity generation [TWh] for the period 2005 - 2020, all capacity ranges excluding pumped storage

Table 77: Projected total hydropower electricity generation [GWh] for the period 2005 - 2020, all capacity ranges excluding pumped storage

	2005	2010	2015	2020	2020
	[GWh]	[GWh]	[GWh]	[GWh]	[%]
Belgium	350	362	391	440	0
Bulgaria	3068	3223	3417	3712	1
Czech Republic	2380	2109	2220	2274	1
Denmark	23	31	31	31	0
Germany	19687	18000	19000	20000	5
Estonia	20	26	30	30	0
Ireland	760	701	714	701	0
Greece	5017	4988	5684	6576	2
Spain	35503	34617	36732	39593	11
France	70240	69024	70363	71703	19
Italy	43768	42141	42070	42000	11
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.
Latvia	2942	2906	2965	3051	1
Lithuania	451	432	446	470	0
Luxembourg	98	107	107	124	0
Hungary	n.a.	194	196	238	0
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	100	127	184	184	0
Austria	37125	38542	39423	42112	11
Poland	2201	2279	2439	2969	1
Portugal	5118	9742	11101	14074	4
Romania	16091	16567	18679	19768	5
Slovenia	4099	4198	4559	5121	1
Slovakia	4638	4834	5161	5400	1
Finland	13910	14210	14210	14410	4
Sweden	68421	68210	68140	68000	18
United Kingdom	4921	5100	5730	6360	2
All Member States (total)	340931	342670	353992	369341	100

More information on subcategories for hydropower electricity generation is presented in Table 79 on page 103. See Table 74 on page 98 for corresponding hydropower capacity data.

Figure 6: Calculated average annual growth for electricity generation from hydropower [%/year] for four periods, all capacity ranges excluding pumped storage

Table 78: Calculated average annual growth for electricity generation from hydropower [%/year] for four periods, all capacity ranges excluding pumped storage

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
Belgium	0.7	1.5	2.4	2.0
Bulgaria	1.0	1.2	1.7	1.4
Czech Republic	-2.4	1.0	0.5	0.8
Denmark	6.2	0.0	0.0	0.0
Germany	-1.8	1.1	1.0	1.1
Estonia	5.4	2.9	0.0	1.4
Ireland	-1.6	0.4	-0.4	0.0
Greece	-0.1	2.6	3.0	2.8
Spain	-0.5	1.2	1.5	1.4
France	-0.3	0.4	0.4	0.4
Italy	-0.8	0.0	0.0	0.0
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	-0.2	0.4	0.6	0.5
Lithuania	-0.9	0.6	1.1	0.8
Luxembourg	1.8	0.0	3.0	1.5
Hungary	n.a.	0.2	4.0	2.1
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	4.9	7.7	0.0	3.8
Austria	0.8	0.5	1.3	0.9
Poland	0.7	1.4	4.0	2.7
Portugal	13.7	2.6	4.9	3.7
Romania	0.6	2.4	1.1	1.8
Slovenia	0.5	1.7	2.4	2.0
Slovakia	0.8	1.3	0.9	1.1
Finland	0.4	0.0	0.3	0.1
Sweden	-0.1	0.0	0.0	0.0
United Kingdom	0.7	2.4	2.1	2.2
All Member States (average)	0.1	0.7	0.9	0.8

Table 79: Projected hydropower electricity generation [GWh] for the period 2005 - 2020, broken down into capacity ranges and pumped storage capacity

		Hydropower < 1MW	r < 1MW		H	Hydropower 1M	1MW - 10 MW			Hydropower >10MW	>10MW		Pu	Pumped storage hydropower	hydropower			Total hydropower	opower	
	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]
Belgium	20	21	23	26	188	195	211	237	141	146	158	178	0	0	0	0	350	362	391	440
Bulgaria	75	127	125	130	400	503	588	639	2593	2593	2705	2943	0	0	0	0	3068	3223	3417	3712
Czech Republic	343	575	029	724	728	474	490	490	1309	1060	1060	1060	n.a.	n.a.	n.a.	n.a.	2380	2109	2220	2274
Denmark	0	0	0	0	23	31	31	31	0	0	0	0	0	0	0	0	23	31	31	31
Germany	3157	2300	2450	2550	3560	4050	4250	4500	12971	11650	12300	12950	7786	6869	6869	8395	19687	18000	19000	20000
Estonia	14	20	24	24	9	9	9	9	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	20	26	30	30
Ireland	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	760	701	714	701
Greece	106	112	131	150	218	593	713	833	4693	4283	4840	5593	593	2776	774	1703	5017	4988	5684	9259
Spain	893	831	715	803	5719	4973	4617	5477	28891	28813	31399	33314	5153	3640	6577	8023	35503	34617	36732	39593
France	1796	1694	1727	1759	6111	2166	5878	2990	62332	61563	62758	63953	4705	5130	6199	7268	70240	69024	70363	71703
Italy	1851	1737	2009	2281	7391	7459	8627	9626	34525	32946	31434	29923	1268	2739	2734	2730	43768	42141	42070	42000
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Latvia	59	59	63	29	3	3	3	3	2880	2844	2899	2981	n.a.	n.a.	n.a.	n.a.	2942	2906	2965	3051
Lithuania	n.a.	n.a.	n.a.	n.a.	99	79	93	117	385	353	353	353	370	700	700	700	451	432	446	470
Luxembourg	5	9	9	7	93	100	100	117	0	0	0	0	785	785	928	928	86	107	107	124
Hungary	n.a.	5	∞	12	n.a.	30	30	29	n.a.	158	158	158	n.a.	0	0	0	n.a.	194	196	238
Malta	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	5	5	5	5	57	57	95	122	122	122	0	0	0	0	100	127	184	184
Austria	1448	2129	2178	2326	3247	3400	3477	3715	32430	33013	33768	36071	2738	2732	2732	2732	37125	38542	39423	42112
Poland	358	357	427	497	504	534	624	714	1339	1388	1388	1758	0	0	0	0	2201	2279	2439	5969
Portugal	n.a.	n.a.	n.a.	n.a.	381	827	1108	1511	4737	8916	9993	12562	387	0	0	0	5118	9742	11101	14074
Romania	61	95	135	164	538	624	1054	1195	15493	15848	17490	18410	0	0	0	0	16091	16567	18679	19768
Slovenia	451	262	270	270	155	192	247	270	3493	3744	4042	4581	0	0	0	0	4099	4198	4559	5121
Slovakia	80	75	119	179	198	164	244	364	4360	4595	4798	4857	0	0	0	0	4638	4834	5161	5400
Finland	140	150	150	150	1260	1290	1290	1310	12510	12780	12780	12960	0	0	0	0	13910	14210	14210	14410
Sweden	430	430	430	430	2835	2835	2835	2835	65155	65015	64875	64735	7.1	71	71	71	68421	68210	68140	00089
United Kingdom	44	n.a.	n.a.	n.a.	399	n.a.	n.a.	n.a.	4478	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	4921	5100	5730	6360
All Member States (total)	11331	10985	11665	12554	34028	34134	36573	40274	294810	291830	299320	309462	23856	23562	27704	32550	340931	342670	353992	369341

See Table 76 on page 100 for corresponding hydropower capacity data.

Figure 7: Calculated average number of full load hours for total hydropower [hrs/year] for the period 2005 - 2020

Table 80: Calculated average number of full load hours for total hydropower [hrs/year] for the period 2005 - 2020

	2005	2010	2015	2020
	[hrs/year]	[hrs/year]	[hrs/year]	[hrs/year]
Belgium	3238	3225	3253	3143
Bulgaria	1052	1082	1104	1129
Czech Republic	2333	2014	2020	2021
Denmark	2300	3100	3100	3100
Germany	4548	4442	4562	4641
Estonia	4000	3714	3750	3750
Ireland	3248	2996	3051	2996
Greece	1615	1541	1572	1451
Spain	1949	1852	1832	1771
France	2771	2675	2601	2534
Italy	2830	2542	2447	2360
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	1915	1892	1913	1968
Lithuania	508	487	499	522
Luxembourg	2882	2816	2816	2818
Hungary	n.a.	3804	3769	3606
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	2703	2702	2706	2706
Austria	4695	4680	4680	4681
Poland	2405	2394	2434	2577
Portugal	1063	1974	1582	1474
Romania	2559	2583	2563	2558
Slovenia	4178	3920	3821	3782
Slovakia	2904	2980	2980	2980
Finland	4576	4659	4659	4648
Sweden	4197	4183	4177	4167
United Kingdom	1147	1133	1217	1293
All Member States (average)	2856	2800	2724	2644

The capacity [MW] used for the calculation refers to the capacity data without pumped storage and also the electricity production [GWh] is excluding pumped storage

Figure 8: Calculated per capita (2008) electricity generation for total hydropower [kWh/cap] for the period 2005 - 2020

Table 81: Calculated per capita (2008) electricity generation for total hydropower [kWh/cap] for the period 2005 - 2020

	2005	2010	2015	2020
	[kWh/cap]	[kWh/cap]	[kWh/cap]	[kWh/cap]
Belgium	33	34	37	41
Bulgaria	402	422	447	486
Czech Republic	229	203	214	219
Denmark	4	6	6	6
Germany	239	219	231	243
Estonia	15	19	22	22
Ireland	173	159	162	159
Greece	447	445	507	586
Spain	784	764	811	874
France	1098	1079	1100	1121
Italy	734	707	706	704
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	1296	1280	1306	1344
Lithuania	134	128	132	140
Luxembourg	203	221	221	256
Hungary	n.a.	19	20	24
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	6	8	11	11
Austria	4463	4633	4739	5062
Poland	58	60	64	78
Portugal	482	918	1046	1326
Romania	747	770	868	918
Slovenia	2039	2088	2268	2547
Slovakia	859	895	956	1000
Finland	2624	2681	2681	2719
Sweden	7451	7428	7420	7405
United Kingdom	80	83	94	104
All Member States (average)	685	689	711	742

The electricity production [GWh] used for the calculation is excluding pumped storage.

The population data can be viewed in Table 14 (page 32)

Figure 9: Calculated per surface area (2004) electricity generation for total hydropower [MWh/km²] for the period 2005 - 2020

Table 82: Calculated per surface area (2004) electricity generation for total hydropower [MWh/km²] for the period 2005 - 2020

	2005 [MWh/km ²]	2010 [MWh/km ²]	2015 [MWh/km ²]	2020 [MWh/km ²]
Belgium	11.5	11.9	12.8	14.4
Bulgaria	27.6	29.0	30.8	33.4
Czech Republic	30.2	26.7	28.1	28.8
Denmark	0.5	0.7	0.7	0.7
Germany	55.1	50.4	53.2	56.0
Estonia	0.5	0.6	0.7	0.7
Ireland	10.9	10.0	10.2	10.0
Greece	38.0	37.8	43.1	49.8
Spain	70.2	68.4	72.6	78.2
France	111.0	109.1	111.2	113.3
Italy	145.2	139.8	139.6	139.4
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	45.5	45.0	45.9	47.2
Lithuania	6.9	6.6	6.8	7.2
Luxembourg	37.9	41.4	41.4	48.0
Hungary	n.a.	2.1	2.1	2.6
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	2.4	3.1	4.4	4.4
Austria	442.6	459.5	470.0	502.1
Poland	7.0	7.3	7.8	9.5
Portugal	55.6	105.9	120.7	153.0
Romania	67.5	69.5	78.4	82.9
Slovenia	202.2	207.1	224.9	252.6
Slovakia	94.6	98.6	105.3	110.1
Finland	41.1	42.0	42.0	42.6
Sweden	155.0	154.5	154.4	154.1
United Kingdom	20.2	21.0	23.6	26.2
All Member States (average)	77.5	77.9	80.4	83.9

The electricity production [GWh] used for the calculation is excluding pumped storage.

The surface area data can be viewed in Table 14 (page 32)

Deep geothermal electricity

Figure 10: Projected geothermal electric capacity [MW] for the period 2005 - 2020

Table 83: Projected geothermal electric capacity [MW] for the period 2005 - 2020

	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]	2020 [%]
Belgium	0	0	0	4	0
Bulgaria	0	0	0	0	0
Czech Republic	0	0	4	4	0
Denmark	0	0	0	0	0
Germany	0	10	79	298	18
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0	0
Greece	0	0	20	120	7
Spain	0	0	0	50	3
France	15	26	53	80	5
Italy	711	754	837	920	57
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.	n.a.
Lithuania	0	0	0	0	0
Luxembourg	0	0	0	0	0
Hungary	n.a.	0	4	57	4
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	0	0	0
Austria	1	1	1	1	0
Poland	0	0	0	0	0
Portugal	14	25	40	75	5
Romania	0	0	0	0	0
Slovenia	0	0	0	0	0
Slovakia	0	0	4	4	0
Finland	0	0	0	0	0
Sweden	n.a.	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.	n.a.
All Member States (total)	741	816	1042	1613	100

See Table 85 on page 110 for corresponding geothermal electricity production data.

Figure 11: Calculated average annual growth for capacity of geothermal electricity [%/year] for four periods

Table 84: Calculated average annual growth for capacity of geothermal electricity [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	n.a.	n.a.	n.a.	n.a.
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	n.a.	n.a.	0.0	n.a.
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	n.a.	51.2	30.4	40.4
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	n.a.	n.a.	43.1	n.a.
Spain	n.a.	n.a.	n.a.	n.a.
France	11.6	15.3	8.6	11.9
Italy	1.2	2.1	1.9	2.0
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	n.a.	n.a.	n.a.	n.a.
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	n.a.	70.1	n.a.
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	0.0	0.0	0.0	0.0
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	12.3	9.9	13.4	11.6
Romania	n.a.	n.a.	n.a.	n.a.
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	n.a.	n.a.	0.0	n.a.
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	1.9	5.0	9.1	7.0

Note that a step from 0 MW to a nonzero value in the next period will result in an 'n.a.' entry in the table.

Figure 12: Projected geothermal electricity generation [GWh] for the period 2005 - 2020, all capacity ranges excluding pumped storage

Table 85: Projected geothermal electricity generation [GWh] for the period 2005 - 2020

All Member States (total)	5477	5977	7342	10892	100
United Kingdom	n.a.	n.a.	n.a.	n.a.	n.a.
Sweden	n.a.	n.a.	n.a.	n.a.	n.a.
Finland	0	0	0	0	0
Slovakia	0	0	28	30	0
Slovenia	0	0	0	0	0
Romania	0	0	0	0	0
Portugal	55	163	260	488	4
Poland	0	0	0	0	0
Austria	2	2	2	2	0
Netherlands	0	0	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	0	29	410	4
Luxembourg	0	0	0	0	0
Lithuania	0	0	0	0	0
Latvia	n.a.	n.a.	n.a.	n.a.	n.a.
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.
Italy	5325	5632	6191	6750	62
France	95	153	314	475	4
Spain	0	0	0	300	3
Greece	n.a.	0	123	736	7
Ireland	0	0	0	0	0
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Germany	0	27	377	1654	15
Denmark	0	0	0	0	0
Czech Republic	0	0	18	18	0
Bulgaria	0	0	0	0	0
Belgium	0	0	0	29	0
	[GWh]	[GWh]	[GWh]	[GWh]	[%]
	2005	2010	2015	2020	2020

See Table 83 on page 108 for corresponding geothermal electricity capacity data.

Figure 13: Calculated average annual growth for generation of geothermal electricity [%/year] for four periods

Table 86: Calculated average annual growth for generation of geothermal electricity [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	n.a.	n.a.	n.a.	n.a.
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	n.a.	n.a.	0.0	n.a.
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	n.a.	69.4	34.4	50.9
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	n.a.	n.a.	43.0	n.a.
Spain	n.a.	n.a.	n.a.	n.a.
France	10.0	15.5	8.6	12.0
Italy	1.1	1.9	1.7	1.8
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	n.a.	n.a.	n.a.	n.a.
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	n.a.	69.9	n.a.
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	0.0	0.0	0.0	0.0
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	24.3	9.8	13.4	11.6
Romania	n.a.	n.a.	n.a.	n.a.
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	n.a.	n.a.	1.4	n.a.
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	1.8	4.2	8.2	6.2

Figure 14: Calculated average number of full load hours for geothermal electricity [hrs/year] for the period 2005 - 2020

Table 87: Calculated average number of full load hours for geothermal electricity [hrs/year] for the period 2005 - 2020

	2005 [hrs/year]	2010 [hrs/year]	2015 [hrs/year]	2020 [hrs/year]
Belgium	n.a.	n.a.	n.a.	8314
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	n.a.	n.a.	4500	4500
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	n.a.	2700	4772	5550
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	n.a.	n.a.	6150	6133
Spain	n.a.	n.a.	n.a.	6000
France	6333	5885	5925	5938
Italy	7489	7469	7397	7337
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	n.a.	n.a.	n.a.	n.a.
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	n.a.	7250	7193
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	2000	2000	2000	2000
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	3929	6520	6500	6507
Romania	n.a.	n.a.	n.a.	n.a.
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	n.a.	n.a.	7000	7500
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	7391	7325	7046	6755

Figure 15: Calculated per capita (2008) generation of geothermal electricity [kWh/cap] for the period 2005 - 2020

Table 88: Calculated per capita (2008) generation of geothermal electricity [kWh/cap] for the period 2005 - 2020

	2005 [kWh/cap]	2010 [kWh/cap]	2015 [kWh/cap]	2020 [kWh/cap]
Belgium	0	0	0	3
Bulgaria	0	0	0	0
Czech Republic	0	0	2	2
Denmark	0	0	0	0
Germany	0	0	5	20
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0
Greece	n.a.	0	11	66
Spain	0	0	0	7
France	1	2	5	7
Italy	89	94	104	113
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	0	0	0	0
Luxembourg	0	0	0	0
Hungary	n.a.	0	3	41
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	0	0
Austria	0	0	0	0
Poland	0	0	0	0
Portugal	5	15	24	46
Romania	0	0	0	0
Slovenia	0	0	0	0
Slovakia	0	0	5	6
Finland	0	0	0	0
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	11	12	15	22

Figure 16: Calculated per surface area (2004) generation of geothermal electricity [MWh/km 2] for the period 2005 - 2020

Table 89: Calculated per surface area (2004) generation of geothermal electricity [MWh/km 2] for the period 2005 - 2020

	$\frac{2005}{[\text{MWh/km}^2]}$	2010 [MWh/km ²]	2015 [MWh/km ²]	2020 [MWh/km ²]
Belgium	0.0	0.0	0.0	1.0
Bulgaria	0.0	0.0	0.0	0.0
Czech Republic	0.0	0.0	0.2	0.2
Denmark	0.0	0.0	0.0	0.0
Germany	0.0	0.1	1.1	4.6
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0.0	0.0	0.0	0.0
Greece	n.a.	0.0	0.9	5.6
Spain	0.0	0.0	0.0	0.6
France	0.2	0.2	0.5	0.8
Italy	17.7	18.7	20.5	22.4
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	0.0	0.0	0.0	0.0
Luxembourg	0.0	0.0	0.0	0.0
Hungary	n.a.	0.0	0.3	4.4
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	0.0	0.0	0.0	0.0
Austria	0.0	0.0	0.0	0.0
Poland	0.0	0.0	0.0	0.0
Portugal	0.6	1.8	2.8	5.3
Romania	0.0	0.0	0.0	0.0
Slovenia	0.0	0.0	0.0	0.0
Slovakia	0.0	0.0	0.6	0.6
Finland	0.0	0.0	0.0	0.0
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	1.2	1.4	1.7	2.5

Solar electricity

Figure 17: Projected total solar electric capacity [GW] for the period 2005 - 2020, including photovoltaic (PV) and concentrated solar power (CSP)

Table 90: Projected total solar electric capacity [MW] for the period 2005 - 2020, including photovoltaic (PV) and concentrated solar power (CSP)

	2005	2010	2015	2020	2020
	[MW]	[MW]	[MW]	[MW]	[%]
Belgium	2	350	713	1340	1
Bulgaria	0	9	251	303	0
Czech Republic	1	1650	1680	1695	2
Denmark	3	3	4	6	0
Germany	1980	15784	34279	51753	57
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0	0
Greece	1	184	1300	2450	3
Spain	60	4653	8966	13445	15
France	25	504	2353	5400	6
Italy	34	2505	5562	8600	9
Cyprus	0	6	87	267	0
Latvia	0	0	1	2	0
Lithuania	0	1	10	10	0
Luxembourg	24	27	88	113	0
Hungary	n.a.	0	19	63	0
Malta	0	4	27	28	0
Netherlands	51	92	317	722	1
Austria	22	90	179	322	0
Poland	0	1	2	3	0
Portugal	3	156	720	1500	2
Romania	0	0	148	260	0
Slovenia	0	12	37	139	0
Slovakia	0	60	160	300	0
Finland	0	0	0	10	0
Sweden	4	5	7	8	0
United Kingdom	11	50	1070	2680	3
All Member States (total)	2221	26146	57980	91419	100

More information on subcategories for solar electricity capacity is presented in Table 92 on page 118. See Table 93 on page 119 for corresponding solar electricity production data.

Figure 18: Calculated average annual growth for capacity of solar electricity [%/year] for four periods

Table 91: Calculated average annual growth for capacity of solar electricity [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	178.2	15.3	13.4	14.4
Bulgaria	n.a.	94.6	3.8	42.1
Czech Republic	340.0	0.4	0.2	0.3
Denmark	0.0	5.9	8.4	7.2
Germany	51.5	16.8	8.6	12.6
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	183.8	47.9	13.5	29.5
Spain	138.7	14.0	8.4	11.2
France	82.3	36.1	18.1	26.8
Italy	136.3	17.3	9.1	13.1
Cyprus	106.4	70.7	25.1	46.2
Latvia	n.a.	n.a.	14.9	n.a.
Lithuania	n.a.	58.5	0.0	25.9
Luxembourg	2.4	26.7	5.1	15.4
Hungary	n.a.	n.a.	27.1	n.a.
Malta	n.a.	45.9	0.8	21.3
Netherlands	12.5	28.1	17.9	22.9
Austria	32.5	14.7	12.5	13.6
Poland	n.a.	14.9	8.4	11.6
Portugal	120.4	35.8	15.8	25.4
Romania	n.a.	n.a.	11.9	n.a.
Slovenia	n.a.	25.3	30.3	27.8
Slovakia	n.a.	21.7	13.4	17.5
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	4.6	7.0	2.7	4.8
United Kingdom	35.4	84.5	20.2	48.9
All Member States (average)	63.7	17.3	9.5	13.3

The annual growth indicator has been calculated based total solar electricity (photovoltaic (PV) and concentrated solar power (CSP))

See Table 95 on page 121 for corresponding solar electricity production data.

Table 92: Projected solar electric capacity [MW] for the period 2005 - 2020, broken down into photovoltaic (PV) and concentrated solar power (CSP)

		Solar photovoltaic	otovoltaic			Concentrated solar power	solar power			Total solar	electricity	
	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]	2005 [MW]	2005 2010 2015 MW] [MW] [MW]	2015 [MW]	2020 [MW]
Belgium	2	350	713	1340	0	0	0	0	2	350	713	1340
Bulgaria	0	9	251	303	0	0	0	0	0	9	251	303
Czech Republic	_	1650	1680	1695	n.a.	n.a.	n.a.	n.a.	_	1650	1680	1695
Denmark	3	3	4	6	0	0	0	0	3	3	4	6
Germany	1980	15784	34279	51753	0	0	0	0	1980	15784	34279	51753
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	0	0	n.a.	n.a.	0	0	0	0	0	0
Greece	_	184	1270	2200	n.a.	0	30	250	_	184	1300	2450
Spain	60	4021	5918	8367	0	632	3048	5079	60	4653	8966	13445
France	25	504	2151	4860	0	0	203	540	25	504	2353	5400
Italy	34	2500	5500	8000	0	5	62	600	34	2505	5562	8600
Cyprus	0	6	37	192	0	0	50	75	0	6	87	267
Latvia	n.a.	n.a.	_	2	n.a.	n.a.	n.a.	n.a.	0	0	_	2
Lithuania	0	_	10	10	0	0	0	0	0	_	10	10
Luxembourg	24	27	88	113	0	0	0	0	24	27	88	113
Hungary	n.a.	0	19	63	n.a.	0	0	0	n.a.	0	19	63
Malta	n.a.	4	27	28	n.a.	n.a.	n.a.	n.a.	0	4	27	28
Netherlands	51	92	317	722	0	0	0	0	51	92	317	722
Austria	22	90	179	322	0	0	0	0	22	90	179	322
Poland	0	_	2	3	0	0	0	0	0	_	2	3
Portugal	3	156	540	1000	0	0	180	500	3	156	720	1500
Romania	0	0	148	260	0	0	0	0	0	0	148	260
Slovenia	0	12	37	139	0	0	0	0	0	12	37	139
Slovakia	0	60	160	300	0	0	0	0	0	60	160	300
Finland	0	0	0	10	0	0	0	0	0	0	0	10
Sweden	4	5	7	~	n.a.	n.a.	n.a.	n.a.	4	5	7	~
United Kingdom	11	50	1070	2680	n.a.	0	0	0	11	50	1070	2680
All Member States (total)	2221	25509	54408	84376	0	637	3573	7044	2221	26146	57980	91419

Figure 19: Projected total solar electricity generation [TWh] for the period 2005 - 2020, including photovoltaic (PV) and concentrated solar power (CSP)

Table 93: Projected total solar electricity generation [GWh] for the period 2005 - 2020, including photovoltaic (PV) and concentrated solar power (CSP)

	2005	2010	2015	2020	2020
	[GWh]	[GWh]	[GWh]	[GWh]	[%]
Belgium	1	304	610	1139	1
Bulgaria	0	12	343	435	0
Czech Republic	0	578	1708	1726	2
Denmark	2	2	3	4	0
Germany	1282	9499	26161	41389	40
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0	0
Greece	1	242	1754	3605	3
Spain	41	7561	17785	29669	29
France	22	613	2981	6885	7
Italy	31	1976	6292	11350	11
Cyprus	0	6	208	533	1
Latvia	0	0	1	4	0
Lithuania	0	0	13	15	0
Luxembourg	18	20	65	84	0
Hungary	n.a.	2	26	81	0
Malta	0	6	41	43	0
Netherlands	40	73	250	570	1
Austria	21	85	170	306	0
Poland	0	1	2	3	0
Portugal	3	230	1157	2475	2
Romania	0	0	180	320	0
Slovenia	0	12	37	139	0
Slovakia	0	30	160	300	0
Finland	0	0	0	0	0
Sweden	0	1	3	4	0
United Kingdom	8	40	890	2240	2
All Member States (total)	1470	21294	60840	103319	100

More information on subcategories for solar electricity generation is presented in Table 95 on page 121. See Table 90 on page 116 for corresponding solar electric capacity data.

Figure 20: Calculated average annual growth for generation from solar electricity [%/year] for four periods

Table 94: Calculated average annual growth for generation from solar electricity [%/year] for four periods

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
	[/o/year]	[///year]	[///year]	[/oryear]
Belgium	213.7	15.0	13.3	14.1
Bulgaria	n.a.	95.5	4.9	43.2
Czech Republic	n.a.	24.2	0.2	11.6
Denmark	0.0	8.4	5.9	7.2
Germany	49.3	22.5	9.6	15.9
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	199.8	48.6	15.5	31.0
Spain	183.9	18.7	10.8	14.6
France	94.5	37.2	18.2	27.4
Italy	129.6	26.1	12.5	19.1
Cyprus	147.2	100.2	20.7	55.5
Latvia	n.a.	n.a.	32.0	n.a.
Lithuania	n.a.	n.a.	2.9	n.a.
Luxembourg	2.1	26.6	5.3	15.4
Hungary	n.a.	67.0	25.5	44.8
Malta	n.a.	46.0	0.8	21.3
Netherlands	12.8	27.9	17.9	22.8
Austria	32.3	14.9	12.5	13.7
Poland	n.a.	14.9	8.4	11.6
Portugal	138.2	38.1	16.4	26.8
Romania	n.a.	n.a.	12.2	n.a.
Slovenia	n.a.	25.3	30.3	27.8
Slovakia	n.a.	39.8	13.4	25.9
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	n.a.	24.6	5.9	14.9
United Kingdom	38.0	86.0	20.3	49.6
All Member States (average)	70.7	23.4	11.2	17.1

The annual growth indicator has been calculated based total solar electricity (photovoltaic (PV) and concentrated solar power (CSP))

Table 95: Projected solar electricity generation [GWh] for the period 2005 - 2020, broken down into photovoltaic (PV) and concentrated solar power (CSP)

		Solar photovoltaic	tovoltaic			Concentrated solar power	solar power			Total solar electricity	electricity	
	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]
Belgium	-	304	610	1139	0	0	0	0	-	304	610	1139
Bulgaria	0	12	343	435	0	0	0	0	0	12	343	435
Czech Republic	0	578	1708	1726	n.a.	n.a.	n.a.	n.a.	0	578	1708	1726
Denmark	2	2	3	4	0	0	0	0	2	2	3	4
Germany	1282	9499	26161	41389	0	0	0	0	1282	9499	26161	41389
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	0	0	n.a.	n.a.	0	0	0	0	0	0
Greece	-	242	1668	2891	n.a.	0	98	714	-1	242	1754	3605
Spain	41	6417	9872	14316	0	1144	7913	15353	41	7561	17785	53669
France	22	613	2617	5913	0	0	365	972	22	613	2981	6885
Italy	31	1961	6122	9650	0	6	170	1700	31	1976	6292	11350
Cyprus	0	9	59	309	0	0	149	224	0	9	208	533
Latvia	n.a.	n.a.	-1	4	n.a.	n.a.	n.a.	n.a.	0	0	-1	4
Lithuania	0	0	13	15	0	0	0	0	0	0	13	15
Luxembourg	18	20	99	84	0	0	0	0	18	20	99	84
Hungary	n.a.	2	26	81	n.a.	0	0	0	n.a.	2	26	81
Malta	n.a.	9	41	43	n.a.	n.a.	n.a.	n.a.	0	9	41	43
Netherlands	40	73	250	570	0	0	0	0	40	73	250	570
Austria	21	85	170	306	0	0	0	0	21	85	170	306
Poland	0	-	2	ю	0	0	0	0	0	-	2	3
Portugal	3	230	797	1475	0	0	360	1000	3	230	1157	2475
Romania	0	0	180	320	0	0	0	0	0	0	180	320
Slovenia	0	12	37	139	0	0	0	0	0	12	37	139
Slovakia	0	30	160	300	0	0	0	0	0	30	160	300
Finland	0	0	0	0	0	0	0	0	0	0	0	0
Sweden	0	_	3	4	n.a.	n.a.	n.a.	n.a.	0	1	3	4
United Kingdom	∞	40	890	2240	n.a.	0	0	0	8	40	890	2240
All Member States (total)	1470	20141	51798	83356	0	1153	9043	19963	1470	21294	60840	103319

See Table 92 on page 118 for corresponding solar electric capacity data.

ECN-E--10-069 121

Figure 21: Calculated average number of full load hours for total solar electricity [hrs/year] for the period 2005 - 2020

Table 96: Calculated average number of full load hours for total solar electricity [hrs/year] for the period 2005 - 2020

	2005	2010	2015	2020
	[hrs/year]	[hrs/year]	[hrs/year]	[hrs/year]
Belgium	476	869	856	850
Bulgaria	n.a.	1333	1367	1436
Czech Republic	0	350	1017	1018
Denmark	667	667	750	667
Germany	647	602	763	800
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	1000	1315	1349	1471
Spain	683	1625	1984	2207
France	880	1216	1267	1275
Italy	912	789	1131	1320
Cyprus	438	1077	2391	1996
Latvia	n.a.	n.a.	1000	2000
Lithuania	n.a.	0	1300	1500
Luxembourg	750	741	739	743
Hungary	n.a.	n.a.	1368	1286
Malta	n.a.	1528	1530	1530
Netherlands	784	793	789	789
Austria	955	944	950	950
Poland	n.a.	1000	1000	1000
Portugal	1000	1474	1607	1650
Romania	n.a.	n.a.	1216	1231
Slovenia	n.a.	1000	1000	1000
Slovakia	n.a.	500	1000	1000
Finland	n.a.	n.a.	n.a.	0
Sweden	0	200	429	500
United Kingdom	727	800	832	836
All Member States (average)	662	814	1049	1130

The full load hours have been calculated based total solar electricity (photovoltaic (PV) and concentrated solar power (CSP))

Figure 22: Calculated per capita (2008) generation for total solar electricity [kWh/cap] for the period 2005 - 2020

Table 97: Calculated per capita (2008) generation for total solar electricity [kWh/cap] for the period 2005 - 2020

	2005	2010	2015	2020
	[kWh/cap]	[kWh/cap]	[kWh/cap]	[kWh/cap]
Belgium	0	28	57	107
Bulgaria	0	2	45	57
Czech Republic	0	56	165	166
Denmark	0	0	1	1
Germany	16	116	318	503
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0
Greece	0	22	156	321
Spain	1	167	393	655
France	0	10	47	108
Italy	1	33	106	190
Cyprus	0	8	264	675
Latvia	0	0	0	2
Lithuania	0	0	4	4
Luxembourg	37	41	134	174
Hungary	n.a.	0	3	8
Malta	0	15	100	104
Netherlands	2	4	15	35
Austria	3	10	20	37
Poland	0	0	0	0
Portugal	0	22	109	233
Romania	0	0	8	15
Slovenia	0	6	18	69
Slovakia	0	6	30	56
Finland	0	0	0	0
Sweden	0	0	0	0
United Kingdom	0	1	15	37
All Member States (average)	3	43	122	208

The per capita indicator has been calculated based on total solar electricity (photovoltaic (PV) and concentrated solar power (CSP))

Figure 23: Calculated per surface area (2004) generation for total solar electricity [MWh/km²] for the period 2005 - 2020

Table 98: Calculated per surface area (2004) generation for total solar electricity [MWh/km²] for the period 2005 - 2020

	2005 [MWh/km ²]	2010 [MWh/km ²]	2015 [MWh/km ²]	2020 [MWh/km ²]
Belgium	0.0	10.0	20.0	37.3
Bulgaria	0.0	0.1	3.1	3.9
Czech Republic	0.0	7.3	21.7	21.9
Denmark	0.0	0.0	0.1	0.1
Germany	3.6	26.6	73.3	115.9
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0.0	0.0	0.0	0.0
Greece	0.0	1.8	13.3	27.3
Spain	0.1	14.9	35.1	58.6
France	0.0	1.0	4.7	10.9
Italy	0.1	6.6	20.9	37.7
Cyprus	0.0	0.7	22.5	57.6
Latvia	0.0	0.0	0.0	0.1
Lithuania	0.0	0.0	0.2	0.2
Luxembourg	7.0	7.7	25.1	32.5
Hungary	n.a.	0.0	0.3	0.9
Malta	0.0	19.6	130.0	135.2
Netherlands	1.0	1.8	6.0	13.7
Austria	0.3	1.0	2.0	3.6
Poland	0.0	0.0	0.0	0.0
Portugal	0.0	2.5	12.6	26.9
Romania	0.0	0.0	0.8	1.3
Slovenia	0.0	0.6	1.8	6.9
Slovakia	0.0	0.6	3.3	6.1
Finland	0.0	0.0	0.0	0.0
Sweden	0.0	0.0	0.0	0.0
United Kingdom	0.0	0.2	3.7	9.2
All Member States (average)	0.3	4.8	13.8	23.5

The per area indicator has been calculated based on total solar electricity (photovoltaic (PV) and concentrated solar power (CSP))

Tidal, wave and ocean energy

ECN-E--10-069 125

Figure 24: Projected tidal, wave and ocean energy electric capacity [MW] for the period 2005 - 2020

Table 99: Projected tidal, wave and ocean energy electric capacity [MW] for the period 2005 - 2020

	2005	2010	2015	2020	2020
	[MW]	[MW]	[MW]	[MW]	[%]
Belgium	0	0	0	0	0
Bulgaria	0	0	0	0	0
Czech Republic	n.a.	n.a.	n.a.	n.a.	n.a.
Denmark	0	0	0	0	0
Germany	0	0	0	0	0
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	75	3
Greece	n.a.	n.a.	n.a.	n.a.	n.a.
Spain	0	0	0	100	4
France	240	240	302	380	17
Italy	0	0	0	3	0
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.	n.a.
Lithuania	0	0	0	0	0
Luxembourg	0	0	0	0	0
Hungary	n.a.	0	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	0	135	6
Austria	n.a.	n.a.	n.a.	n.a.	n.a.
Poland	0	0	0	0	0
Portugal	0	5	60	250	11
Romania	0	0	0	0	0
Slovenia	0	0	0	0	0
Slovakia	0	0	0	0	0
Finland	0	0	10	10	0
Sweden	n.a.	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	0	0	1300	58
All Member States (total)	240	245	372	2253	100

See Table 101 on page 128 for corresponding tidal, wave and ocean energy electricity production data.

Figure 25: Calculated average annual growth for electric capacity from tidal, wave and ocean energy [%/year] for four periods

Table 100: Calculated average annual growth for electric capacity from tidal, wave and ocean energy [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	n.a.	n.a.	n.a.	n.a.
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	n.a.	n.a.	n.a.	n.a.
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	n.a.	n.a.	n.a.	n.a.
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	n.a.	n.a.	n.a.	n.a.
Spain	n.a.	n.a.	n.a.	n.a.
France	0.0	4.7	4.7	4.7
Italy	n.a.	n.a.	n.a.	n.a.
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	n.a.	n.a.	n.a.	n.a.
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	n.a.	n.a.	n.a.
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	n.a.	n.a.	n.a.	n.a.
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	n.a.	64.4	33.0	47.9
Romania	n.a.	n.a.	n.a.	n.a.
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	n.a.	n.a.	n.a.	n.a.
Finland	n.a.	n.a.	0.0	n.a.
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	0.4	8.7	43.4	24.8

Figure 26: Projected tidal, wave and ocean energy electricity generation [GWh] for the period 2005 - 2020, all capacity ranges excluding pumped storage

Table 101: Projected tidal, wave and ocean energy electricity generation [GWh] for the period 2005 - 2020

	2005	2010	2015	2020	2020
	[GWh]	[GWh]	[GWh]	[GWh]	[%]
Belgium	0	0	0	0	0
Bulgaria	0	0	0	0	0
Czech Republic	n.a.	n.a.	n.a.	n.a.	n.a.
Denmark	0	0	0	0	0
Germany	0	0	0	0	0
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	230	4
Greece	n.a.	n.a.	n.a.	n.a.	n.a.
Spain	0	0	0	220	3
France	535	500	789	1150	18
Italy	0	0	1	5	0
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.	n.a.
Lithuania	0	0	0	0	0
Luxembourg	0	0	0	0	0
Hungary	n.a.	0	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	0	514	8
Austria	n.a.	n.a.	n.a.	n.a.	n.a.
Poland	0	0	0	0	0
Portugal	0	1	75	437	7
Romania	0	0	0	0	0
Slovenia	0	0	0	0	0
Slovakia	0	0	0	0	0
Finland	0	0	0	0	0
Sweden	n.a.	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	0	0	3950	61
All Member States (total)	535	501	865	6506	100

See Table 99 on page 126 for corresponding tidal, wave and ocean energy capacity data.

Figure 27: Calculated average annual growth for electricity generation from tidal, wave and ocean energy [%/year] for four periods

Table 102: Calculated average annual growth for electricity generation from tidal, wave and ocean energy [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	n.a.	n.a.	n.a.	n.a.
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	n.a.	n.a.	n.a.	n.a.
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	n.a.	n.a.	n.a.	n.a.
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	n.a.	n.a.	n.a.	n.a.
Spain	n.a.	n.a.	n.a.	n.a.
France	-1.3	9.6	7.8	8.7
Italy	n.a.	n.a.	38.0	n.a.
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	n.a.	n.a.	n.a.	n.a.
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	n.a.	n.a.	n.a.
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	n.a.	n.a.	n.a.	n.a.
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	n.a.	137.1	42.3	83.7
Romania	n.a.	n.a.	n.a.	n.a.
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	n.a.	n.a.	n.a.	n.a.
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	-1.3	11.5	49.7	29.2

Figure 28: Calculated average number of full load hours for tidal, wave and ocean energy [hrs/year] for the period 2005 - 2020

Table 103: Calculated average number of full load hours for tidal, wave and ocean energy [hrs/year] for the period 2005 - 2020

	2005 [hrs/year]	2010 [hrs/year]	2015 [hrs/year]	2020 [hrs/year]
Belgium	n.a.	n.a.	n.a.	n.a.
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	n.a.	n.a.	n.a.	n.a.
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	n.a.	n.a.	n.a.	n.a.
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	3067
Greece	n.a.	n.a.	n.a.	n.a.
Spain	n.a.	n.a.	n.a.	2200
France	2229	2083	2613	3026
Italy	n.a.	n.a.	n.a.	1667
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	n.a.	n.a.	n.a.	n.a.
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	n.a.	n.a.	n.a.
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	3807
Austria	n.a.	n.a.	n.a.	n.a.
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	n.a.	200	1250	1748
Romania	n.a.	n.a.	n.a.	n.a.
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	n.a.	n.a.	n.a.	n.a.
Finland	n.a.	n.a.	0	0
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	3038
All Member States (average)	2229	2045	2325	2888

Figure 29: Calculated per capita (2008) electricity generation for tidal, wave and ocean energy [kWh/cap] for the period 2005 - 2020

Table 104: Calculated per capita (2008) electricity generation for tidal, wave and ocean energy [kWh/cap] for the period 2005 - 2020

	2005	2010	2015	2020
	[kWh/cap]	[kWh/cap]	[kWh/cap]	[kWh/cap]
Belgium	0	0	0	0
Bulgaria	0	0	0	0
Czech Republic	n.a.	n.a.	n.a.	n.a.
Denmark	0	0	0	0
Germany	0	0	0	0
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	52
Greece	n.a.	n.a.	n.a.	n.a.
Spain	0	0	0	5
France	8	8	12	18
Italy	0	0	0	0
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	0	0	0	0
Luxembourg	0	0	0	0
Hungary	n.a.	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	0	31
Austria	n.a.	n.a.	n.a.	n.a.
Poland	0	0	0	0
Portugal	0	0	7	41
Romania	0	0	0	0
Slovenia	0	0	0	0
Slovakia	0	0	0	0
Finland	0	0	0	0
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	0	0	65
All Member States (average)	1	1	2	13

Figure 30: Calculated per surface area (2004) electricity generation for tidal, wave and ocean energy [MWh/km²] for the period 2005 - 2020

Table 105: Calculated per surface area (2004) electricity generation for tidal, wave and ocean energy [MWh/km²] for the period 2005 - 2020

	$\frac{2005}{[\text{MWh/km}^2]}$	2010 [MWh/km ²]	2015 [MWh/km ²]	2020 [MWh/km ²]
Belgium	0.0	0.0	0.0	0.0
Bulgaria	0.0	0.0	0.0	0.0
Czech Republic	n.a.	n.a.	n.a.	n.a.
Denmark	0.0	0.0	0.0	0.0
Germany	0.0	0.0	0.0	0.0
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0.0	0.0	0.0	3.3
Greece	n.a.	n.a.	n.a.	n.a.
Spain	0.0	0.0	0.0	0.4
France	0.8	0.8	1.2	1.8
Italy	0.0	0.0	0.0	0.0
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	0.0	0.0	0.0	0.0
Luxembourg	0.0	0.0	0.0	0.0
Hungary	n.a.	0.0	0.0	0.0
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	0.0	0.0	0.0	12.4
Austria	n.a.	n.a.	n.a.	n.a.
Poland	0.0	0.0	0.0	0.0
Portugal	0.0	0.0	0.8	4.7
Romania	0.0	0.0	0.0	0.0
Slovenia	0.0	0.0	0.0	0.0
Slovakia	0.0	0.0	0.0	0.0
Finland	0.0	0.0	0.0	0.0
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	0.0	0.0	16.3
All Member States (average)	0.1	0.1	0.2	1.5

Wind power

Figure 31: Projected total wind power electric capacity [GW] for the period 2005 - 2020, including both onshore and offshore wind power

Table 106: Projected total wind power electric capacity [MW] for the period 2005 - 2020, including both onshore and offshore wind power

	0	33	1		
	2005 [MW]	2010 [MW]	2015 [MW]	2020 [MW]	2020 [%]
	[1V1 VV]	[IVI VV]	[101 00]	[1V1 VV]	[70]
Belgium	190	733	2049	4320	2
Bulgaria	8	336	1274	1440	1
Czech Republic	22	243	493	743	0
Denmark	3129	3584	4180	3960	2
Germany	18415	27676	36647	45750	21
Estonia	31	147	400	650	0
Ireland	494	2088	3151	4649	2
Greece	491	1327	4303	7500	4
Spain	9918	20155	27997	38000	18
France	752	5542	13445	25000	12
Italy	1639	5800	9068	12680	6
Cyprus	0	82	180	300	0
Latvia	26	28	104	416	0
Lithuania	1	179	389	500	0
Luxembourg	35	35	105	131	0
Hungary	n.a.	330	577	750	0
Malta	0	0	7	110	0
Netherlands	1224	2221	5578	11178	5
Austria	694	1011	1951	2578	1
Poland	121	1100	3540	6650	3
Portugal	1063	4256	6125	6875	3
Romania	1	560	3200	4000	2
Slovenia	0	2	60	106	0
Slovakia	5	5	300	350	0
Finland	80	170	670	2500	1
Sweden	536	1873	3210	4547	2
United Kingdom	1565	5430	14210	27880	13
All Member States (total)	40440	84913	143212	213563	100

See Table 109 on page 137 for corresponding wind power electricity production data.

Figure 32: Calculated average annual growth for electric capacity from wind power [%/year] for four periods

Table 107: Calculated average annual growth for electric capacity from wind power [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	31.0	22.8	16.1	19.4
Bulgaria	111.2	30.5	2.5	15.7
Czech Republic	61.7	15.2	8.5	11.8
Denmark	2.8	3.1	-1.1	1.0
Germany	8.5	5.8	4.5	5.2
Estonia	36.5	22.2	10.2	16.0
Ireland	33.4	8.6	8.1	8.3
Greece	22.0	26.5	11.8	18.9
Spain	15.2	6.8	6.3	6.5
France	49.1	19.4	13.2	16.3
Italy	28.8	9.3	6.9	8.1
Cyprus	n.a.	17.0	10.8	13.8
Latvia	1.5	30.0	32.0	31.0
Lithuania	182.2	16.8	5.1	10.8
Luxembourg	0.0	24.6	4.5	14.1
Hungary	n.a.	11.8	5.4	8.6
Malta	n.a.	269.4	74.0	153.5
Netherlands	12.7	20.2	14.9	17.5
Austria	7.8	14.1	5.7	9.8
Poland	55.5	26.3	13.4	19.7
Portugal	32.0	7.6	2.3	4.9
Romania	254.5	41.7	4.6	21.7
Slovenia	n.a.	97.4	12.1	48.7
Slovakia	0.0	126.8	3.1	52.9
Finland	16.3	31.6	30.1	30.8
Sweden	28.4	11.4	7.2	9.3
United Kingdom	28.2	21.2	14.4	17.8
All Member States (average)	16.0	11.0	8.3	9.7

The annual growth indicator has been calculated based total wind power (onshore and offshore wind power)

Table 108: Projected wind power electric capacity [MW] for the period 2005 - 2020, broken down into onshore and offshore wind

		Onsho	Onshore wind			Offshore wind	e Wind			Iotal wind power	nd power	
	2005	2010	2015	2020	2005	2010	2015	2020	2005	2010	2015	2020
	[MW]	[WW]	[WW]	[MW]	[WW]	[MW]	[WW]	[WW]	[WW]	[MW]	[WW]	[MW]
Belgium	190	684	764	2320	0	49	1285	2000	190	733	2049	4320
Bulgaria	~	336	1274	1440	0	0	0	0	∞	336	1274	1440
Czech Republic	22	243	493	743	n.a.	n.a.	n.a.	n.a.	22	243	493	743
Denmark	2706	2923	2929	2621	423	661	1251	1339	3129	3584	4180	3960
Germany	18415	27526	33647	35750	0	150	3000	10000	18415	27676	36647	45750
Estonia	31	147	400	400	n.a.	n.a.	n.a.	250	31	147	400	650
Ireland	469	2052	2899	4094	25	36	252	555	494	2088	3151	4649
Greece	491	1327	4303	7200	n.a.	n.a.	n.a.	300	491	1327	4303	7500
Spain	9918	20155	27847	35000	0	0	150	3000	9918	20155	27997	38000
France	752	5542	10778	19000	0	0	2667	6000	752	5542	13445	25000
Italy	1639	5800	8900	12000	0	0	168	680	1639	5800	9068	12680
Cyprus	0	82	180	300	n.a.	n.a.	n.a.	n.a.	0	82	180	300
Latvia	26	28	104	236	n.a.	n.a.	n.a.	180	26	28	104	416
Lithuania	_	179	389	500	0	0	0	0	_	179	389	500
Luxembourg	35	35	105	131	0	0	0	0	35	35	105	131
Hungary	n.a.	330	577	750	n.a.	0	0	0	n.a.	330	577	750
Malta	n.a.	0	7	15	n.a.	0	0	95	0	0	7	110
Netherlands	1224	1993	4400	6000	0	228	1178	5178	1224	2221	5578	11178
Austria	694	1011	1951	2578	0	0	0	0	694	1011	1951	2578
Poland	121	1100	3350	5600	0	0	0	500	121	1100	3540	6650
Portugal	1063	4256	6100	6800	0	0	25	75	1063	4256	6125	6875
Romania	1	560	3200	4000	0	0	0	0	1	560	3200	4000
Slovenia	0	2	60	106	0	0	0	0	0	2	60	106
Slovakia	5	5	300	350	0	0	0	0	5	5	300	350
Finland	80	n.a.	n.a.	1600	0	n.a.	n.a.	900	80	170	670	2500
Sweden	513	1797	3081	4365	23	76	129	182	536	1873	3210	4547
United Kingdom	1351	4040	8710	14890	214	1390	5500	12990	1565	5430	14210	27880
All Member States (total)	39755	82153	126747	168789	685	2590	15605	44224	40440	84913	143212	213563

See Table 111 on page 139 for corresponding wind power electricity production data.

Because for Finland and Belgium no breakdown into onshore and offshore wind power has been specified after 2005 the sum of the subcategories in 2010, 2015 and 2020 is lower than the value for All Member States (total). Poland reports micro-wind separately from onshore wind, which results in a difference between onshore and total capacity.

Figure 33: Projected total wind power electricity generation [TWh] for the period 2005 - 2020, all capacity ranges excluding pumped storage, including onshore and offshore wind power

Table 109: Projected total wind power electricity generation [GWh] for the period 2005 - 2020, including onshore and offshore wind power

	2005	2010	2015	2020	2020
	[GWh]	[GWh]	[GWh]	[GWh]	[%]
Belgium	320	991	6084	10474	2
Bulgaria	5	605	2293	2592	1
Czech Republic	21	454	975	1496	0
Denmark	6614	8606	11242	11713	2
Germany	26658	44668	69994	104435	21
Estonia	54	337	981	1537	0
Ireland	1588	4817	8339	11970	2
Greece	1267	3129	9674	16797	3
Spain	20729	40978	57086	78254	16
France	1128	11638	30634	57900	12
Italy	2558	8398	13652	20000	4
Cyprus	0	31	300	499	0
Latvia	47	58	228	910	0
Lithuania	2	297	924	1250	0
Luxembourg	52	60	192	239	0
Hungary	n.a.	692	1377	1545	0
Malta	0	0	17	255	0
Netherlands	2067	4470	13655	32408	7
Austria	1343	2034	3780	4811	1
Poland	136	2310	7541	15210	3
Portugal	1773	10214	13400	14596	3
Romania	0	460	6614	8400	2
Slovenia	0	2	109	191	0
Slovakia	7	7	480	560	0
Finland	150	360	1520	6000	1
Sweden	939	4793	8646	12500	3
United Kingdom	2904	14150	39430	78270	16
All Member States (total)	70362	164559	309168	494812	100

More information on subcategories for wind power electricity generation is presented in Table 111 on page 139. See Table 106 on page 134 for corresponding wind power capacity data.

Figure 34: Calculated average annual growth for electricity generation from wind power [%/year] for four periods

Table 110: Calculated average annual growth for electricity generation from wind power [%/year] for four periods

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
Belgium	25.4	43.8	11.5	26.6
Bulgaria	160.9	30.5	2.5	15.7
Czech Republic	84.9	16.5	8.9	12.7
Denmark	5.4	5.5	0.8	3.1
Germany	10.9	9.4	8.3	8.9
Estonia	44.2	23.8	9.4	16.4
Ireland	24.8	11.6	7.5	9.5
Greece	19.8	25.3	11.7	18.3
Spain	14.6	6.9	6.5	6.7
France	59.5	21.4	13.6	17.4
Italy	26.8	10.2	7.9	9.1
Cyprus	n.a.	57.5	10.7	32.0
Latvia	4.3	31.5	31.9	31.7
Lithuania	171.9	25.5	6.2	15.5
Luxembourg	2.9	26.2	4.5	14.8
Hungary	n.a.	14.8	2.3	8.4
Malta	n.a.	345.1	70.9	175.8
Netherlands	16.7	25.0	18.9	21.9
Austria	8.7	13.2	4.9	9.0
Poland	76.2	26.7	15.1	20.7
Portugal	41.9	5.6	1.7	3.6
Romania	n.a.	70.4	4.9	33.7
Slovenia	n.a.	122.5	11.9	57.8
Slovakia	0.0	132.9	3.1	55.0
Finland	19.1	33.4	31.6	32.5
Sweden	38.5	12.5	7.7	10.1
United Kingdom	37.3	22.7	14.7	18.7
All Member States (average)	18.5	13.4	9.9	11.6

The annual growth indicator has been calculated based total wind power (onshore and offshore wind power)

Table 111: Projected wind power electricity generation [GWh] for the period 2005 - 2020, broken down into onshore wind and offshore wind

		Onshore wind	s wind			Offshore wind	e wind			Total wind power	d power	
	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]
Belgium	320	840	2100	4274	0	151	3984	6200	320	991	6084	10474
Bulgaria	5	605	2293	2592	0	0	0	0	5	909	2293	2592
Czech Republic	21	454	975	1496	n.a.	n.a.	n.a.	n.a.	21	454	975	1496
Denmark	5158	6121	6322	6391	1456	2485	4920	5322	6614	9098	11242	11713
Germany	26658	44397	61990	72664	0	271	8004	31771	26658	44668	69994	104435
Estonia	54	337	981	974	n.a.	n.a.	n.a.	563	54	337	981	1537
Ireland	n.a.	4701	7525	10228	n.a.	116	814	1742	1588	4817	8339	11970
Greece	1267	3129	9674	16125	n.a.	n.a.	n.a.	672	1267	3129	9674	16797
Spain	20729	40978	26786	70502	0	0	300	7753	20729	40978	24086	78254
France	1128	11638	22634	39900	0	0	8000	18000	1128	11638	30634	57900
Italy	2558	8398	13199	18000	0	0	453	2000	2558	8398	13652	20000
Cyprus	0	31	300	499	n.a.	n.a.	n.a.	n.a.	0	31	300	499
Latvia	47	58	228	519	n.a.	n.a.	n.a.	391	47	28	228	910
Lithuania	2	297	924	1250	0	0	0	0	2	297	924	1250
Luxembourg	52	09	192	239	0	0	0	0	52	09	192	239
Hungary	n.a.	692	1377	1545	n.a.	0	0	0	n.a.	692	1377	1545
Malta	n.a.	0	17	38	n.a.	0	0	216	0	0	17	255
Netherlands	2067	3667	8056	13372	0	803	4147	19036	2067	4470	13655	32408
Austria	1343	2034	3780	4811	0	0	0	0	1343	2034	3780	4811
Poland	136	2310	7370	13160	0	0	0	1500	136	2310	7541	15210
Portugal	1773	10214	13420	14416	0	0	09	180	1773	10214	13400	14596
Romania	0	460	6614	8400	0	0	0	0	0	460	6614	8400
Slovenia	0	2	109	191	0	0	0	0	0	2	109	191
Slovakia	7	7	480	260	0	0	0	0	7	7	480	260
Finland	150	n.a.	n.a.	3500	0	n.a.	n.a.	2500	150	360	1520	0009
Sweden	877	4585	8292	12000	62	208	354	200	686	4793	8646	12500
United Kingdom	2501	9520	20610	34150	403	4630	18820	44120	2904	14150	39430	78270
All Member States (total)	66853	155535	257701	351796	1921	8664	49856	142466	70362	164559	309168	494812

See Table 108 on page 136 for corresponding wind power capacity data.

for the year 2005. Therefore, the sum of the subcategories is lower than the value for All Member States (total). Poland reports micro-wind separately from onshore wind, which results in a For Finland no breakdown into onshore and offshore wind power has been specified after 2005. For Ireland the energy production has not been allocated to either onshore or offshore wind power difference between onshore and total electricity production.

Figure 35: Calculated average number of full load hours for total wind power [hrs/year] for the period 2005 - 2020

Table 112: Calculated average number of full load hours for total wind power [hrs/year] for the period 2005 - 2020

	2005	2010	2015	2020
	[hrs/year]	[hrs/year]	[hrs/year]	[hrs/year]
Belgium	1680	1351	2970	2425
Bulgaria	625	1801	1800	1800
Czech Republic	955	1868	1978	2013
Denmark	2114	2401	2689	2958
Germany	1448	1614	1910	2283
Estonia	1742	2293	2453	2365
Ireland	3215	2307	2646	2575
Greece	2580	2358	2248	2240
Spain	2090	2033	2039	2059
France	1500	2100	2278	2316
Italy	1561	1448	1506	1577
Cyprus	n.a.	378	1667	1663
Latvia	1808	2071	2192	2188
Lithuania	2000	1659	2375	2500
Luxembourg	1486	1714	1829	1824
Hungary	n.a.	2097	2386	2060
Malta	n.a.	1000	2539	2324
Netherlands	1689	2013	2448	2899
Austria	1935	2012	1937	1866
Poland	1124	2100	2130	2287
Portugal	1668	2400	2188	2123
Romania	0	821	2067	2100
Slovenia	n.a.	1000	1817	1802
Slovakia	1400	1400	1600	1600
Finland	1875	2118	2269	2400
Sweden	1752	2559	2693	2749
United Kingdom	1856	2606	2775	2807
All Member States (average)	1740	1938	2159	2317

The full load hours have been calculated based total wind power (onshore and offshore wind power)

Figure 36: Calculated per capita (2008) electricity generation for total wind power [kWh/cap] for the period 2005 - 2020

Table 113: Calculated per capita (2008) electricity generation for total wind power [kWh/cap] for the period 2005 - 2020

	2005	2010	2015	2020
	[kWh/cap]	[kWh/cap]	[kWh/cap]	[kWh/cap]
Belgium	30	93	570	982
Bulgaria	1	79	300	339
Czech Republic	2	44	94	144
Denmark	1208	1572	2053	2139
Germany	324	543	851	1270
Estonia	40	251	732	1146
Ireland	361	1094	1895	2720
Greece	113	279	863	1498
Spain	458	905	1261	1728
France	18	182	479	905
Italy	43	141	229	335
Cyprus	0	39	380	632
Latvia	21	26	100	401
Lithuania	1	88	274	371
Luxembourg	107	124	397	494
Hungary	n.a.	69	137	154
Malta	0	0	43	621
Netherlands	126	272	832	1975
Austria	161	245	454	578
Poland	4	61	198	399
Portugal	167	962	1262	1375
Romania	0	21	307	390
Slovenia	0	1	54	95
Slovakia	1	1	89	104
Finland	28	68	287	1132
Sweden	102	522	942	1361
United Kingdom	47	231	644	1279
All Member States (average)	141	331	621	994

The per capita indicator has been calculated based total wind power (onshore and offshore wind power)

Figure 37: Calculated per surface area (2004) electricity generation for total wind power [MWh/km²] for the period 2005 - 2020

Table 114: Calculated per surface area (2004) electricity generation for total wind power [MWh/km²] for the period 2005 - 2020

	2005 [MWh/km ²]	2010 [MWh/km ²]	2015 [MWh/km ²]	2020 [MWh/km ²]
Belgium	10.5	32.4	199.3	343.1
Bulgaria	0.0	5.5	20.7	23.4
Czech Republic	0.3	5.8	12.4	19.0
Denmark	153.5	199.7	260.8	271.8
Germany	74.7	125.1	196.0	292.5
Estonia	1.2	7.7	22.4	35.2
Ireland	22.8	69.0	119.5	171.5
Greece	9.6	23.7	73.3	127.3
Spain	41.0	81.0	112.8	154.7
France	1.8	18.4	48.4	91.5
Italy	8.5	27.9	45.3	66.4
Cyprus	0.0	3.4	32.4	53.9
Latvia	0.7	0.9	3.5	14.1
Lithuania	0.0	4.5	14.2	19.1
Luxembourg	20.1	23.2	74.2	92.4
Hungary	n.a.	7.4	14.8	16.6
Malta	0.0	0.0	55.4	807.0
Netherlands	49.8	107.6	328.8	780.4
Austria	16.0	24.3	45.1	57.4
Poland	0.4	7.4	24.1	48.6
Portugal	19.3	111.0	145.6	158.6
Romania	0.0	1.9	27.7	35.2
Slovenia	0.0	0.1	5.4	9.4
Slovakia	0.1	0.1	9.8	11.4
Finland	0.4	1.1	4.5	17.7
Sweden	2.1	10.9	19.6	28.3
United Kingdom	11.9	58.2	162.2	322.0
All Member States (average)	16.0	37.4	70.2	112.4

The per area indicator has been calculated based total wind power (onshore and offshore wind power)

Biomass electricity

Figure 38: Projected total biomass electric capacity [GW] for the period 2005 - 2020, all biomass input categories

Table 115: Projected total biomass electric capacity [MW] for the period 2005 - 2020, all biomass input categories

	2005	2010	2015	2020	2020
	[MW]	[MW]	[MW]	[MW]	[%]
Belgium	340	618	1290	2452	6
Bulgaria	0	0	147	158	0
Czech Republic	36	113	267	417	1
Denmark	777	1017	1837	2779	6
Germany	3174	6312	7721	8825	20
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	20	77	137	153	0
Greece	24	60	120	560	1
Spain	601	752	965	1587	4
France	707	1052	1895	3007	7
Italy	937	1918	2869	3820	9
Cyprus	0	6	10	17	0
Latvia	10	13	110	200	0
Lithuania	5	34	150	224	1
Luxembourg	9	13	36	59	0
Hungary	n.a.	374	420	600	1
Malta	0	3	23	23	0
Netherlands	1128	1430	2443	2892	7
Austria	976	1211	1228	1281	3
Poland	286	380	1530	2530	6
Portugal	476	647	907	952	2
Romania	0	14	425	600	1
Slovenia	18	51	83	96	0
Slovakia	49	118	225	280	1
Finland	2140	1790	2200	2920	7
Sweden	2568	2683	2799	2914	7
United Kingdom	1458	1920	2530	4240	10
All Member States (total)	15739	22605	32367	43585	100

More information on subcategories for biomass electric capacity is presented in Table 117 on page 146. See Table 118 on page 147 for corresponding biomass electricity electricity production data.

Figure 39: Calculated average annual growth for capacity of biomass electricity [%/year] for four periods, all biomass input categories

Table 116: Calculated average annual growth for capacity of biomass electricity [%/year] for four periods, all biomass input categories

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
D-1-i				
Belgium	12.7	15.9	13.7	14.8
Bulgaria	n.a.	n.a.	1.5	n.a.
Czech Republic	25.7	18.8	9.3	13.9
Denmark	5.5	12.6	8.6	10.6
Germany	14.7	4.1	2.7	3.4
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	30.9	12.2	2.2	7.1
Greece	20.1	14.9	36.1	25.0
Spain	4.6	5.1	10.5	7.8
France	8.3	12.5	9.7	11.1
Italy	15.4	8.4	5.9	7.1
Cyprus	n.a.	10.8	11.2	11.0
Latvia	5.4	53.3	12.7	31.4
Lithuania	46.7	34.6	8.4	20.7
Luxembourg	7.6	22.6	10.4	16.3
Hungary	n.a.	2.3	7.4	4.8
Malta	n.a.	52.1	-0.5	23.0
Netherlands	4.9	11.3	3.4	7.3
Austria	4.4	0.3	0.8	0.6
Poland	5.8	32.1	10.6	20.9
Portugal	6.3	7.0	1.0	3.9
Romania	n.a.	97.9	7.1	45.6
Slovenia	23.2	10.2	3.0	6.5
Slovakia	19.2	13.8	4.5	9.0
Finland	-3.5	4.2	5.8	5.0
Sweden	0.9	0.9	0.8	0.8
United Kingdom	5.7	5.7	10.9	8.2
All Member States (average)	7.5	7.4	6.1	6.8

Table 117: Projected biomass electric capacity [MW] for the period 2005 - 2020, all biomass input categories

		ODIOC	Solid blomass			Biogas	gas			Bioliquids	uids			Iotal biomass	mass	
	2005	2010	2015	2020	2005	2010	2015	2020	2005	2010	2015	2020		2010	2015	2020
	[MW]	[WW]	[WW]	[MW]	[MW]	[MW]	[WW]	[MW]	[WW]	[WW]	[WW]	[WW]	[WW]	[MW]	[WW]	[WW]
Belgium	270	498	1052	2007	57	106	224	427	13	14	15	18	340	618	1290	2452
Bulgaria	0	0	89	93	0	0	58	65	0	0	0	0	0	0	147	158
Czech Republic	n.a.	n.a.	n.a.	n.a.	36	113	267	417	n.a.	n.a.	n.a.	n.a.	36	113	267	417
Denmark	740	991	1717	2404	37	26	95	349	0	0	26	26	777	1017	1837	2779
Germany	2427	3707	4358	4792	693	2368	3126	3796	54	237	237	237	3174	6312	7721	8825
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	2	15	75	91	18	62	62	62	0	0	0	0	20	77	137	153
Greece	n.a.	20	20	350	24	40	100	210	n.a.	n.a.	n.a.	n.a.	24	60	120	560
Spain	449	596	745	1187	152	156	220	400	0	0	0	0	601	752	965	1587
France	623	888	1531	2382	22	164	363	625	0	0	0	0	707	1052	1895	3007
Italy	653	1026	1333	1640	284	453	826	1200	0	439	710	980	937	1918	2869	3820
Cyprus	n.a.	n.a.	n.a.	n.a.	0	6	10	17	n.a.	n.a.	n.a.	n.a.	0	6	10	17
Latvia	ယ	2	46	108	7	=	2	92	n.a.	n.a.	n.a.	n.a.	10	13	110	200
Lithuania	2	22	115	162	3	12	35	62	0	0	0	0	5	34	150	224
Luxembourg	4	5	13	30	5	~	23	29	n.a.	0	0	0	9	13	36	59
Hungary	n.a.	360	377	500	n.a.	14	43	100	n.a.	n.a.	n.a.	n.a.	n.a.	374	420	600
Malta	n.a.	0	15	15	n.a.	သ	∞	7	n.a.	n.a.	n.a.	n.a.	0	3	23	23
Netherlands	966	1214	2062	2253	162	216	381	639	0	0	0	0	1128	1430	2443	2892
Austria	892	1099	1114	1164	72	97	100	102	12	15	15	15	976	1211	1228	1281
Poland	268	300	1300	1550	18	80	230	980	0	0	0	0	286	380	1530	2530
Portugal	178	273	367	367	9	39	105	150	289	334	435	435	476	647	907	952
Romania	0	10	300	405	0	4	125	195	0	0	0	0	0	14	425	600
Slovenia	15	22	24	34	3	30	58	61	0	0	n.a.	n.a.	18	51	83	96
Slovakia	47	100	145	170	2	18	80	110	n.a.	n.a.	n.a.	n.a.	49	118	225	280
Finland	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2140	1790	2200	2920
Sweden	2526	2641	2757	2872	42	42	42	42	n.a.	n.a.	n.a.	n.a.	2568	2683	2799	2914
United Kingdom	501	580	1290	3140	957	1340	1240	1100	0	0	0	0	1458	1920	2530	4240
All Member States (total)	10566	14369	20845	27716	2665	5407	7884	11237	368	1039	1438	1711	15739	22605	32367	43585
	,															

See Table 120 on page 149 for corresponding biomass electricity electricity production data. For Finland no breakdown into biomass input types has been provided. Therefore, the sum of all categories is lower than the value for All Member States (total).

Figure 40: Projected total biomass electricity generation [TWh] for the period 2005 - 2020, all biomass input categories

Table 118: Projected total biomass electricity generation [GWh] for the period 2005 - 2020, all biomass input categories

	2005	2010	2015	2020	2020
	[GWh]	[GWh]	[GWh]	[GWh]	[%]
Belgium	540	3007	5952	11039	5
Bulgaria	0	0	803	865	0
Czech Republic	721	1930	4819	6165	3
Denmark	3243	3772	6035	8846	4
Germany	14025	32778	42090	49457	21
Estonia	33	241	346	346	0
Ireland	116	347	887	1006	0
Greece	94	254	504	1259	1
Spain	2653	4517	5962	10017	4
France	3819	5441	10496	17171	7
Italy	4675	8645	13712	18780	8
Cyprus	0	30	84	143	0
Latvia	41	72	664	1226	1
Lithuania	7	147	761	1223	1
Luxembourg	46	70	200	334	0
Hungary	n.a.	1955	2250	3324	1
Malta	0	9	140	135	0
Netherlands	5041	5975	13350	16639	7
Austria	2823	4720	4826	5147	2
Poland	1451	6028	9893	14218	6
Portugal	1976	2400	3358	3516	2
Romania	0	67	2050	2900	1
Slovenia	114	298	623	676	0
Slovakia	32	610	1349	1710	1
Finland	9660	8090	9880	12910	6
Sweden	n.a.	n.a.	13693	16754	7
United Kingdom	9109	12330	14290	26160	11
All Member States (total)	60219	103733	169017	231966	100

More information on subcategories for biomass electricity generation is presented in Table 120 on page 149. See Table 115 on page 144 for corresponding biomass electricity capacity data.

As indicated in section 1.5.26 the subtotal for *Biomass* in Sweden does not include liquid energy carriers. For this reason the sum of all subcategories is 65 GWh higher than the value for *All Member States (total)*.

ECN-E--10-069 147

Figure 41: Calculated average annual growth for generation from biomass electricity [%/year] for four periods, all biomass input categories

Table 119: Calculated average annual growth for generation from biomass electricity [%/year] for four periods, all biomass input categories

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
Belgium	41.0	14.6	13.1	13.9
Bulgaria	n.a.	n.a.	1.5	n.a.
Czech Republic	21.8	20.1	5.0	12.3
Denmark	3.1	9.9	7.9	8.9
Germany	18.5	5.1	3.3	4.2
Estonia	48.8	7.5	0.0	3.7
Ireland	24.5	20.6	2.5	11.2
Greece	22.0	14.7	20.1	17.4
Spain	11.2	5.7	10.9	8.3
France	7.3	14.0	10.3	12.2
Italy	13.1	9.7	6.5	8.1
Cyprus	n.a.	22.9	11.2	16.9
Latvia	11.9	55.9	13.0	32.8
Lithuania	83.8	38.9	10.0	23.6
Luxembourg	8.8	23.4	10.8	16.9
Hungary	n.a.	2.9	8.1	5.5
Malta	n.a.	74.3	-0.6	31.6
Netherlands	3.5	17.4	4.5	10.8
Austria	10.8	0.4	1.3	0.9
Poland	33.0	10.4	7.5	9.0
Portugal	4.0	6.9	0.9	3.9
Romania	n.a.	98.2	7.2	45.8
Slovenia	21.2	15.9	1.6	8.5
Slovakia	80.3	17.2	4.9	10.9
Finland	-3.5	4.1	5.5	4.8
Sweden	n.a.	n.a.	4.1	n.a.
United Kingdom	6.2	3.0	12.9	7.8
All Member States (average)	11.5	10.3	6.5	8.4

Table 120: Projected biomass electricity generation [GWh] for the period 2005 - 2020, broken down into biomass input categories

		Solid biomass	omass			Biogas	dS.			Bioliquias	spind			Total biomass	omass	
	2005 [GWh]	2010 [GWh]	2015 [GWh]	2020 [GWh]												
3elgium	1521	2580	5145	9575	235	393	777	1439	35	34	30	25	540	3007	5952	11039
Bulgaria	0	0	490	514	0	0	313	351	0	0	0	0	0	0	803	865
Czech Republic	260	1306	3065	3294	161	624	1754	2871	0	0	0	0	721	1930	4819	6165
Denmark	2960	3578	5312	6345	283	194	721	2493	0	0	-	∞	3243	3772	6035	8846
Germany	10044	17498	21695	24569	3652	13829	18946	23438	329	1450	1450	1450	14025	32778	42090	49457
Estonia	n.a.	33	241	346	346											
Ireland	∞	28	267	289	108	320	320	319	0	0	0	0	116	347	887	1006
Greece	n.a.	73	73	364	94	181	431	895	n.a.	n.a.	n.a.	n.a.	94	254	504	1259
Spain	2029	3719	4660	7400	623	799	1302	2617	0	0	0	0	2653	4517	5962	10017
France	3341	4506	8366	13470	478	935	2129	3701	0	0	0	0	3819	5441	10496	17171
Italy	3477	4758	6329	7900	1198	2129	4074	6020	0	1758	3309	4860	4675	8645	13712	18780
Cyprus	n.a.	n.a.	n.a.	n.a.	0	30	84	143	n.a.	n.a.	n.a.	n.a.	0	30	84	143
Latvia	5	∞	271	642	36	2	393	584	n.a.	n.a.	n.a.	n.a.	41	72	664	1226
Lithuania	33	86	533	810	4	50	228	413	0	0	0	0	7	147	761	1223
Luxembourg	19	25	77	190	27	4	123	144	n.a.	0	0	0	46	70	200	334
Hungary	n.a.	1870	1988	2688	n.a.	85	262	989	n.a.	n.a.	n.a.	n.a.	n.a.	1955	2250	3324
Malta	n.a.	0	98	98	n.a.	6	54	50	n.a.	n.a.	n.a.	n.a.	0	6	140	135
Netherlands	4758	5103	11189	11975	283	872	2161	4664	0	0	0	0	5041	5975	13350	16639
Austria	2507	4131	4223	4530	283	553	267	581	33	36	36	36	2823	4720	4826	5147
Poland	1340	5700	8950	10200	III	328	943	4018	0	0	0	0	1451	6028	9893	14218
Portugal	934	1092	1468	1468	34	138	368	525	1008	1170	1523	1523	1976	2400	3358	3516
Romania	0	84	1450	1950	0	19	009	950	0	0	0	0	0	29	2050	2900
Slovenia	82	150	272	309	32	148	351	367	0	0	n.a.	n.a.	114	298	623	929
Slovakia	27	540	725	820	S	70	624	860	n.a.	n.a.	n.a.	n.a.	32	610	1349	1710
Finland	9640	3930	5300	7860	20	40	20	270	n.a.	4120	4530	4780	0996	0608	0886	12910
Sweden	7452	10513	13574	16635	53	53	53	53	65	65	65	9	n.a.	n.a.	13693	16754
United Kingdom	4347	5500	7990	20590	4762	6830	6300	5570	0	0	0	0	6016	12330	14290	26160
All Member States (total)	55054	76754	113798	154900	12482	28737	43928	63972	1470	8633	10944	12747	60219	103733	169017	231966

Figure 42: Calculated average number of full load hours for total biomass electricity [hrs/year] for the period 2005 - 2020, all biomass input categories

Table 121: Calculated average number of full load hours for total biomass electricity [hrs/year] for the period 2005 - 2020, all biomass input categories

	2005	2010	2015	2020
	[hrs/year]	[hrs/year]	[hrs/year]	[hrs/year]
Belgium	1588	4869	4614	4503
Bulgaria	n.a.	n.a.	5463	5475
Czech Republic	20028	17080	18049	14784
Denmark	4174	3709	3285	3183
Germany	4419	5193	5451	5604
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	5800	4506	6474	6575
Greece	3917	4233	4200	2248
Spain	4414	6007	6178	6312
France	5402	5172	5539	5710
Italy	4989	4507	4779	4916
Cyprus	n.a.	5000	8400	8412
Latvia	4100	5538	6036	6130
Lithuania	1400	4324	5073	5460
Luxembourg	5111	5385	5556	5661
Hungary	n.a.	5227	5357	5540
Malta	n.a.	3056	6047	6016
Netherlands	4469	4178	5465	5753
Austria	2892	3898	3930	4018
Poland	5073	15863	6466	5620
Portugal	4151	3709	3702	3693
Romania	n.a.	4786	4824	4833
Slovenia	6333	5843	7506	7042
Slovakia	653	5169	5996	6107
Finland	4514	4520	4491	4421
Sweden	n.a.	n.a.	4892	5749
United Kingdom	6248	6422	5648	6170
All Member States (average)	3826	4589	5222	5322

Figure 43: Calculated per capita (2008) generation for total biomass electricity [kWh/cap] for the period 2005 - 2020, all biomass input categories

Table 122: Calculated per capita (2008) generation for total biomass electricity [kWh/cap] for the period 2005 - 2020, all biomass input categories

	2005	2010	2015	2020
	[kWh/cap]	[kWh/cap]	[kWh/cap]	[kWh/cap]
Belgium	51	282	558	1035
Bulgaria	0	0	105	113
Czech Republic	69	186	464	594
Denmark	592	689	1102	1615
Germany	171	399	512	602
Estonia	25	180	258	258
Ireland	26	79	202	229
Greece	8	23	45	112
Spain	59	100	132	221
France	60	85	164	268
Italy	78	145	230	315
Cyprus	0	38	106	181
Latvia	18	32	292	540
Lithuania	2	44	226	363
Luxembourg	95	145	413	690
Hungary	n.a.	195	224	331
Malta	0	21	341	330
Netherlands	307	364	814	1014
Austria	339	567	580	619
Poland	38	158	260	373
Portugal	186	226	316	331
Romania	0	3	95	135
Slovenia	57	148	310	336
Slovakia	6	113	250	317
Finland	1822	1526	1864	2436
Sweden	n.a.	n.a.	1491	1824
United Kingdom	149	202	234	428
All Member States (average)	121	208	340	466

The population data can be viewed in Table 14 (page 32)

Figure 44: Calculated per surface area (2004) generation for total biomass electricity [MWh/km²] for the period 2005 - 2020

Table 123: Calculated per surface area (2004) generation for total biomass electricity [MWh/km²] for the period 2005 - 2020

	2005 [MWh/km ²]	2010 [MWh/km ²]	2015 [MWh/km ²]	2020 [MWh/km ²]
Belgium	17.7	98.5	195.0	361.6
Bulgaria	0.0	0.0	7.2	7.8
Czech Republic	9.1	24.5	61.1	78.2
Denmark	75.2	87.5	140.0	205.3
Germany	39.3	91.8	117.9	138.5
Estonia	0.8	5.5	7.9	7.9
Ireland	1.7	5.0	12.7	14.4
Greece	0.7	1.9	3.8	9.5
Spain	5.2	8.9	11.8	19.8
France	6.0	8.6	16.6	27.1
Italy	15.5	28.7	45.5	62.3
Cyprus	0.0	3.2	9.1	15.5
Latvia	0.6	1.1	10.3	19.0
Lithuania	0.1	2.3	11.7	18.7
Luxembourg	17.8	27.1	77.3	129.2
Hungary	n.a.	21.0	24.2	35.7
Malta	0.0	27.5	443.0	429.3
Netherlands	121.4	143.9	321.5	400.7
Austria	33.7	56.3	57.5	61.4
Poland	4.6	19.3	31.6	45.5
Portugal	21.5	26.1	36.5	38.2
Romania	0.0	0.3	8.6	12.2
Slovenia	5.6	14.7	30.7	33.3
Slovakia	0.7	12.4	27.5	34.9
Finland	28.6	23.9	29.2	38.2
Sweden	n.a.	n.a.	31.0	38.0
United Kingdom	37.5	50.7	58.8	107.6
All Member States (average)	13.7	23.6	38.4	52.7

The surface area data can be viewed in Table 14 (page 32)

Deep geothermal thermal energy

Figure 45: Projected total geothermal heat energy [ktoe] for the period 2005 - 2020

Table 124: Projected total geothermal heat energy [ktoe] for the period 2005 - 2020

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	2.8	3.2	4.1	5.7	0
Bulgaria	n.a.	1	3	9	0
Czech Republic	0	0	15	15	1
Denmark	0	0	0	0	0
Germany	12	34	234	686	26
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0	0
Greece	10	24	23	51	2
Spain	4	4	5	10	0
France	130	155	310	500	19
Italy	213	226	260	300	11
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.	n.a.
Lithuania	2	3	4	5	0
Luxembourg	n.a.	0	0	0	0
Hungary	n.a.	101	147	357	14
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	0	39	130	259	10
Austria	19	19	27	40	2
Poland	n.a.	23	57	178	7
Portugal	1	10	18	25	1
Romania	17	25	52	80	3
Slovenia	16	18	19	20	1
Slovakia	3	3	40	90	3
Finland	0	0	0	0	0
Sweden	n.a.	n.a.	n.a.	n.a.	n.a.
United Kingdom	1	n.a.	n.a.	n.a.	n.a.
All Member States (total)	430.8	688.2	1348.1	2630.7	100

Figure 46: Calculated average annual growth for energy from geothermal heat [%/year] for four periods

Table 125: Calculated average annual growth for energy from geothermal heat [%/year] for four periods

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
Belgium	2.7	5.1	6.8	5.9
Bulgaria	n.a.	24.6	24.6	24.6
Czech Republic	n.a.	n.a.	0.0	n.a.
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	23.2	47.1	24.0	35.0
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	19.1	-0.8	17.3	7.8
Spain	0.0	4.6	14.9	9.6
France	3.6	14.9	10.0	12.4
Italy	1.2	2.8	2.9	2.9
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	8.4	5.9	4.6	5.2
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	7.8	19.4	13.5
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	27.2	14.8	20.8
Austria	0.0	7.3	8.2	7.7
Poland	n.a.	19.9	25.6	22.7
Portugal	58.5	12.5	6.8	9.6
Romania	8.0	15.8	9.0	12.3
Slovenia	2.4	1.1	1.0	1.1
Slovakia	0.0	67.9	17.6	40.5
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	9.8	14.4	14.3	14.3

Figure 47: Calculated per capita (2008) energy for total geothermal heat [toe/1000 inhabitants] for the period 2005 - 2020

Table 126: Calculated per capita (2008) energy for total geothermal heat [toe/1000 inhabitants] for the period 2005 - 2020

	2005	2010	2015	2020
	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]
Belgium	0	0	0	1
Bulgaria	n.a.	0	0	1
Czech Republic	0	0	1	1
Denmark	0	0	0	0
Germany	0	0	3	8
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0
Greece	1	2	2	5
Spain	0	0	0	0
France	2	2	5	8
Italy	4	4	4	5
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	1	1	1	1
Luxembourg	n.a.	0	0	0
Hungary	n.a.	10	15	36
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	0	2	8	16
Austria	2	2	3	5
Poland	n.a.	1	1	5
Portugal	0	1	2	2
Romania	1	1	2	4
Slovenia	8	9	9	10
Slovakia	1	1	7	17
Finland	0	0	0	0
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	0	n.a.	n.a.	n.a.
All Member States (average)	1	1	3	5

The population data can be viewed in Table 14 (page 32)

Figure 48: Calculated per surface area (2004) energy for total geothermal heat [toe/km 2] for the period 2005 - 2020

Table 127: Calculated per surface area (2004) energy for total geothermal heat [toe/km 2] for the period 2005 - 2020

	$\frac{2005}{\left[\text{toe/km}^2\right]}$	2010 [toe/km ²]	2015 [toe/km ²]	$\frac{2020}{[\text{toe/km}^2]}$
Belgium	0	0	0	0
Bulgaria	n.a.	0	0	0
Czech Republic	0	0	0	0
Denmark	0	0	0	0
Germany	0	0	1	2
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0
Greece	0	0	0	0
Spain	0	0	0	0
France	0	0	0	1
Italy	1	1	1	1
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	0	0	0	0
Luxembourg	n.a.	0	0	0
Hungary	n.a.	1	2	4
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	0	1	3	6
Austria	0	0	0	0
Poland	n.a.	0	0	1
Portugal	0	0	0	0
Romania	0	0	0	0
Slovenia	1	1	1	1
Slovakia	0	0	1	2
Finland	0	0	0	0
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	0	n.a.	n.a.	n.a.
All Member States (average)	0	0	0	1

The surface area data can be viewed in Table 14 (page 32)

Solar thermal energy

Figure 49: Projected total solar thermal energy [ktoe] for the period 2005 - 2020

Table 128: Projected total solar thermal energy [ktoe] for the period 2005 - 2020

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	3	29	91	199	3
Bulgaria	n.a.	6	11	21	0
Czech Republic	2	7	15	22	0
Denmark	10	11	14	16	0
Germany	238	440	741	1245	20
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	0	4	12	20	0
Greece	101	216	271	355	6
Spain	61	159	308	644	10
France	38	130	465	927	15
Italy	27	113	424	1586	25
Cyprus	41	59	75	90	1
Latvia	0	0	1	2	0
Lithuania	0	0	5	9	0
Luxembourg	0	1	2	8	0
Hungary	n.a.	6	31	82	1
Malta	n.a.	3	3	3	0
Netherlands	16	20	17	23	0
Austria	92	127	181	269	4
Poland	n.a.	21	176	506	8
Portugal	22	50	105	160	3
Romania	0	0	14	70	1
Slovenia	3	5	10	21	0
Slovakia	0	2	7	30	0
Finland	0	0	0	0	0
Sweden	6	6	6	6	0
United Kingdom	29	34	34	34	1
All Member States (total)	690	1449	3019	6348	100

Figure 50: Calculated average annual growth for energy from solar thermal [%/year] for four periods

Table 129: Calculated average annual growth for energy from solar thermal [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	54.4	25.8	16.9	21.2
Bulgaria	n.a.	12.9	13.8	13.3
Czech Republic	28.5	16.5	8.0	12.1
Denmark	1.9	4.9	2.7	3.8
Germany	13.1	11.0	10.9	11.0
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	24.6	10.8	17.5
Greece	16.4	4.6	5.5	5.1
Spain	21.1	14.1	15.9	15.0
France	27.9	29.0	14.8	21.7
Italy	33.2	30.3	30.2	30.2
Cyprus	7.4	4.9	3.8	4.4
Latvia	n.a.	n.a.	14.9	n.a.
Lithuania	n.a.	n.a.	12.5	n.a.
Luxembourg	n.a.	14.9	32.0	23.1
Hungary	n.a.	38.9	21.5	29.9
Malta	n.a.	1.7	0.1	0.9
Netherlands	4.6	-3.2	6.2	1.4
Austria	6.7	7.3	8.2	7.8
Poland	n.a.	53.0	23.5	37.5
Portugal	17.8	16.0	8.8	12.3
Romania	n.a.	n.a.	38.0	n.a.
Slovenia	10.8	14.9	16.0	15.4
Slovakia	n.a.	28.5	33.8	31.1
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	0.0	0.0	0.0	0.0
United Kingdom	3.2	0.0	0.0	0.0
All Member States (average)	16.0	15.8	16.0	15.9

Figure 51: Calculated per capita (2008) energy for total solar thermal [toe/1000 inhabitants] for the period 2005 - 2020

Table 130: Calculated per capita (2008) energy for total solar thermal [toe/1000 inhabitants] for the period 2005 - 2020

	2005	2010	2015	2020
	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]
Belgium	0	3	9	19
Bulgaria	n.a.	1	1	3
Czech Republic	0	1	1	2
Denmark	2	2	3	3
Germany	3	5	9	15
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0	1	3	5
Greece	9	19	24	32
Spain	1	4	7	14
France	1	2	7	14
Italy	0	2	7	27
Cyprus	52	75	95	115
Latvia	0	0	0	1
Lithuania	0	0	1	3
Luxembourg	0	2	4	17
Hungary	n.a.	1	3	8
Malta	n.a.	6	7	7
Netherlands	1	1	1	1
Austria	11	15	22	32
Poland	n.a.	1	5	13
Portugal	2	5	10	15
Romania	0	0	1	3
Slovenia	1	2	5	10
Slovakia	0	0	1	6
Finland	0	0	0	0
Sweden	1	1	1	1
United Kingdom	0	1	1	1
All Member States (average)	1	3	6	13

The population data can be viewed in Table 14 (page 32)

Figure 52: Calculated per surface area (2004) energy for total solar thermal [toe/km 2] for the period 2005 - 2020

Table 131: Calculated per surface area (2004) energy for total solar thermal [toe/km 2] for the period 2005 - 2020

	2005 [toe/km ²]	2010 [toe/km ²]	2015 [toe/km ²]	2020 [toe/km ²]
Belgium	0	1	3	7
Bulgaria	n.a.	0	0	0
Czech Republic	0	0	0	0
Denmark	0	0	0	0
Germany	1	1	2	3
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	0	0
Greece	1	2	2	3
Spain	0	0	1	1
France	0	0	1	1
Italy	0	0	1	5
Cyprus	4	6	8	10
Latvia	0	0	0	0
Lithuania	0	0	0	0
Luxembourg	0	0	1	3
Hungary	n.a.	0	0	1
Malta	n.a.	8	9	9
Netherlands	0	0	0	1
Austria	1	2	2	3
Poland	n.a.	0	1	2
Portugal	0	1	1	2
Romania	0	0	0	0
Slovenia	0	0	0	1
Slovakia	0	0	0	1
Finland	0	0	0	0
Sweden	0	0	0	0
United Kingdom	0	0	0	0
All Member States (average)	0	0	1	1

The surface area data can be viewed in Table 14 (page 32)

Biomass thermal energy

Figure 53: Projected total biomass heat energy [Mtoe] for the period 2005 - 2020, all biomass input categories

Table 132: Projected total biomass heat energy [ktoe] for the period 2005 - 2020, all biomass input categories

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	477	682	1178	2034	2
Bulgaria	724	734	929	1073	1
Czech Republic	1374	1759	2248	2517	3
Denmark	1759	2245	2526	2643	3
Germany	7260	9092	10388	11355	13
Estonia	505	612	626	607	1
Ireland	183	198	388	486	1
Greece	951	1012	1128	1222	1
Spain	3477	3583	4060	4950	5
France	9153	9953	12760	16455	18
Italy	1655	2239	3521	5670	6
Cyprus	4	18	24	30	0
Latvia	1114	1020	1178	1392	2
Lithuania	686	663	879	1023	1
Luxembourg	19	23	50	83	0
Hungary	n.a.	812	829	1277	1
Malta	0	1	2	2	0
Netherlands	647	715	980	1520	2
Austria	3033	3415	3463	3607	4
Poland	n.a.	3911	4227	5089	6
Portugal	2507	2179	2339	2322	3
Romania	3166	2794	2931	3876	4
Slovenia	445	415	495	526	1
Slovakia	358	447	576	690	1
Finland	5490	4990	5810	6610	7
Sweden	7013	7817	8622	9426	10
United Kingdom	560	323	958	3914	4
All Member States (total)	52561	61652	73115	90399	100

More information on subcategories for biomass heat energy is presented in Table 134 on page 168.

Figure 54: Calculated average annual growth for energy from biomass heat [%/year] for four periods, all biomass input categories

Table 133: Calculated average annual growth for energy from biomass heat [%/year] for four periods, all biomass input categories

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
Belgium	7.4	11.5	11.5	11.5
Bulgaria	0.3	4.8	2.9	3.9
Czech Republic	5.1	5.0	2.3	3.6
Denmark	5.0	2.4	0.9	1.6
Germany	4.6	2.7	1.8	2.2
Estonia	3.9	0.5	-0.6	-0.1
Ireland	1.6	14.4	4.6	9.4
Greece	1.3	2.2	1.6	1.9
Spain	0.6	2.5	4.0	3.3
France	1.7	5.1	5.2	5.2
Italy	6.2	9.5	10.0	9.7
Cyprus	34.2	5.7	4.5	5.1
Latvia	-1.7	2.9	3.4	3.2
Lithuania	-0.7	5.8	3.1	4.4
Luxembourg	3.9	16.8	10.7	13.7
Hungary	n.a.	0.4	9.0	4.6
Malta	n.a.	17.0	-4.9	5.5
Netherlands	2.0	6.5	9.2	7.8
Austria	2.4	0.3	0.8	0.5
Poland	n.a.	1.6	3.8	2.7
Portugal	-2.8	1.4	-0.1	0.6
Romania	-2.5	1.0	5.7	3.3
Slovenia	-1.4	3.6	1.2	2.4
Slovakia	4.5	5.2	3.7	4.4
Finland	-1.9	3.1	2.6	2.9
Sweden	2.2	2.0	1.8	1.9
United Kingdom	-10.4	24.3	32.5	28.3
All Member States (average)	3.2	3.5	4.3	3.9

Table 134: Projected biomass heat energy [ktoe] for the period 2005 - 2020, broken down into biomass input categories

All Member States (total)	United Kingdom	Sweden	Finland	Slovakia	Slovenia	Romania	Portugal	Poland	Austria	Netherlands	Malta	Hungary	Luxembourg	Lithuania	Latvia	Cyprus	Italy	France	Spain	Greece	Ireland	Estonia	Germany	Denmark	Czech Republic	Bulgaria	Belgium			
47689	493	6992	5450	357	401	0	1785	n.a.	3025	540	n.a.	n.a.	16	685	1113	4	1629	9067	3441	951	176	505	6794	1714	1351	724	476	[ktoe]	2005	
56557	305	7800	2710	443	415	2793	1514	3846	3400	573	0	812	19	657	1013	16	2206	9870	3550	1012	188	612	7516	2178	1706	734	669	[ktoe]	2010	Solid biomass
66186	904	8607	3300	540	483	2919	1515	3996	3447	604	0	800	39	851	1139	20	3404	12500	3997	1128	362	626	8389	2426	2137	916	1138	[ktoe]	2015	iomass
80993	3612	9415	3940	630	497	3845	1484	4636	3591	650	0	1225	70	973	1343	24	5254	15900	4850	1222	453	607	8952	2470	2350	1053	1947	[ktoe]	2020	
600	67	21	40	_	0	0	10	n.a.	8	69	n.a.	n.a.	ω	_	_	n.a.	26	86	36	n.a.	7	n.a.	154	45	23	0	2	[ktoe]	2005	
1478	18	18	30	4	0	1	10	65	15	Ξ	1	0	5	6	7	2	26	83	33	n.a.	10	n.a.	912	59	53	0	9	[ktoe]	2010	Biogas
2689	54	14	30	36	0	10	23	231	16	174	2	30	12	28	39	5	83	260	63	n.a.	26	n.a.	1312	92	110	13	26	[ktoe]	2015	as
4476	302	Ξ	60	60	0	20	37	453	16	288	2	56	13	50	49	6	266	555	100	n.a.	33	n.a.	1692	165	167	20	55	[ktoe]	2020	
1134	n.a.	65	n.a.	n.a.	43	0	713	n.a.	0	0	n.a.	n.a.	n.a.	0	n.a.	n.a.	0	0	0	n.a.	0	n.a.	313	0	0	0	0	[ktoe]	2005	
3643	n.a.	65	2240	n.a.	0	0	655	n.a.	0	0	n.a.	n.a.	0	0	n.a.	n.a.	7	0	0	n.a.	0	n.a.	664	∞	0	0	4	[ktoe]	2010	Bioliquids
4093	n.a.	65	2470	n.a.	12	2	801	n.a.	0	0	n.a.	n.a.	0	0	n.a.	n.a.	33	0	0	n.a.	0	n.a.	688	∞	0	0	14	[ktoe]	2015	iids
4416	n.a.	65	2610	n.a.	28	=	801	n.a.	0	0	n.a.	n.a.	0	0	n.a.	n.a.	150	0	0	n.a.	0	n.a.	711	∞	0	0	32	[ktoe]	2020	
38	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	38	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	[ktoe]	2005	В
31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	31	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	[ktoe]	2010	Bio-SNG for grid feed-in
202	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	202	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	[ktoe]	2015	rid feed-in
582	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	582	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	[ktoe]	2020	
52561	560	7013	5490	358	445	3166	2507	n.a.	3033	647	0	n.a.	19	686	1114	4	1655	9153	3477	951	183	505	7260	1759	1374	724	477	[ktoe]	2005	Tot
61652	323	7817	4990	447	415	2794	2179	3911	3415	715	_	812	23	663	1020	18	2239	9953	3583	1012	198	612	9092	2245	1759	734	682	[ktoe]	2010	Total biomass thermal energy
73115	958	8622	5810	576	495	2931	2339	4227	3463	980	2	829	50	879	1178	24	3521	12760	4060	1128	388	626	10388	2526	2248	929	1178	[ktoe]	2015	ermal energy
90399	3914	9426	6610	690	526	3876	2322	5089	3607	1520	2	1277	83	1023	1392	30	5670	16455	4950	1222	486	607	11355	2643	2517	1073	2034	[ktoe]	2020	

Figure 55: Calculated per capita (2008) energy for total biomass heat [toe/1000 inhabitants] for the period 2005 - 2020, all biomass input categories

Table 135: Calculated per capita (2008) energy for total biomass heat [toe/1000 inhabitants] for the period 2005 - 2020, all biomass input categories

	2005	2010	2015	2020
	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]
Belgium	45	64	110	191
Bulgaria	95	96	122	140
Czech Republic	132	169	217	242
Denmark	321	410	461	483
Germany	88	111	126	138
Estonia	377	456	467	453
Ireland	42	45	88	110
Greece	85	90	101	109
Spain	77	79	90	109
France	143	156	199	257
Italy	28	38	59	95
Cyprus	5	23	31	38
Latvia	491	449	519	613
Lithuania	204	197	261	304
Luxembourg	39	48	103	172
Hungary	n.a.	81	83	127
Malta	0	2	5	4
Netherlands	39	44	60	93
Austria	365	411	416	434
Poland	n.a.	103	111	134
Portugal	236	205	220	219
Romania	147	130	136	180
Slovenia	221	206	246	262
Slovakia	66	83	107	128
Finland	1036	941	1096	1247
Sweden	764	851	939	1026
United Kingdom	9	5	16	64
All Member States (average)	106	124	147	182

The population data can be viewed in Table 14 (page 32)

Figure 56: Calculated per surface area (2004) energy for total biomass heat [toe/km 2] for the period 2005 - 2020

Table 136: Calculated per surface area (2004) energy for total biomass heat [toe/km 2] for the period 2005 - 2020

	2005 [toe/km ²]	2010 [toe/km ²]	2015 [toe/km ²]	2020 [toe/km ²]
Belgium	16	22	39	67
Bulgaria	7	7	8	10
Czech Republic	17	22	29	32
Denmark	41	52	59	61
Germany	20	25	29	32
Estonia	12	14	14	14
Ireland	3	3	6	7
Greece	7	8	9	9
Spain	7	7	8	10
France	14	16	20	26
Italy	5	7	12	19
Cyprus	0	2	3	3
Latvia	17	16	18	22
Lithuania	11	10	13	16
Luxembourg	7	9	19	32
Hungary	n.a.	9	9	14
Malta	0	3	7	5
Netherlands	16	17	24	37
Austria	36	41	41	43
Poland	n.a.	13	14	16
Portugal	27	24	25	25
Romania	13	12	12	16
Slovenia	22	20	24	26
Slovakia	7	9	12	14
Finland	16	15	17	20
Sweden	16	18	20	21
United Kingdom	2	1	4	16
All Member States (average)	12	14	17	21

The surface area data can be viewed in Table 14 (page 32)

Renewable energy from heat pumps

Figure 57: Projected total heat pump thermal energy [ktoe] for the period 2005 - 2020, all source types

Table 137: Projected total heat pump thermal energy [ktoe] for the period 2005 - 2020, all source types

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	7.1	52.2	161.4	350	3
Bulgaria	0	0	0	0	0
Czech Republic	29	45	82	118	1
Denmark	100	210	301	370	3
Germany	196	465	800	1144	9
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.
Ireland	10	18	51	84	1
Greece	4	17	127	279	2
Spain	8	17	31	51	0
France	76	886	1505	1850	15
Italy	21	1273	1857	2900	24
Cyprus	0	0.34	1.61	2.97	0
Latvia	0	0	2	4	0
Lithuania	0	0	6	14	0
Luxembourg	0	1	4	17	0
Hungary	n.a.	6	37	143	1
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	54	132	252	377	3
Austria	69	96	137	263	2
Poland	n.a.	25	72	148	1
Portugal	0	0	n.a.	n.a.	n.a.
Romania	0	0	3	12	0
Slovenia	2	8	37	58	0
Slovakia	0	0	4	10	0
Finland	40	230	530	660	5
Sweden	0	349	697	1046	9
United Kingdom	0	186	548	2254	19
All Member States (total)	616.1	4016.54	7246.01	12154.97	100

More information on subcategories for heat pump thermal energy is presented in Table 139 on page 174.

Figure 58: Calculated average annual growth for thermal energy from heat pump [%/year] for four periods, all source type

Table 138: Calculated average annual growth for thermal energy from heat pump [%/year] for four periods, all source type

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
Belgium	49.0	25.3	16.7	21.0
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	9.2	12.8	7.6	10.1
Denmark	16.0	7.5	4.2	5.8
Germany	18.9	11.5	7.4	9.4
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	12.5	23.2	10.5	16.7
Greece	33.6	49.5	17.0	32.3
Spain	16.3	12.8	10.5	11.6
France	63.4	11.2	4.2	7.6
Italy	127.3	7.8	9.3	8.6
Cyprus	n.a.	36.5	13.0	24.2
Latvia	n.a.	n.a.	14.9	n.a.
Lithuania	n.a.	n.a.	18.5	n.a.
Luxembourg	n.a.	32.0	33.6	32.8
Hungary	n.a.	43.9	31.0	37.3
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	19.6	13.8	8.4	11.1
Austria	6.8	7.4	13.9	10.6
Poland	n.a.	23.6	15.5	19.5
Portugal	n.a.	n.a.	n.a.	n.a.
Romania	n.a.	n.a.	32.0	n.a.
Slovenia	32.0	35.8	9.4	21.9
Slovakia	n.a.	n.a.	20.1	n.a.
Finland	41.9	18.2	4.5	11.1
Sweden	n.a.	14.8	8.5	11.6
United Kingdom	n.a.	24.1	32.7	28.3
All Member States (average)	45.5	12.5	10.9	11.7

Table 139: Projected heat pump thermal energy [ktoe] for the period 2005 - 2020, broken down into source type

		Aerothermal heat pumps	heat pumps			Geothermal heat pumps	heat pumps			Hydrothermal heat pumps	heat pumps		To	tal renewable ene	Total renewable energy from heat pumps,	ps,
	2005 [ktoe]	2010 [ktoe]	2015 [ktoe]	2020 [ktoe]	2005 [ktoe]	2010 [ktoe]	2015 [ktoe]	2020 [ktoe]	2005 [ktoe]	2010 [ktoe]	2015 [ktoe]	2020 [ktoe]	2005 [ktoe]	2010 [ktoe]	2015 [ktoe]	2020 [ktoe]
Belgium	3.5	26.1	77.5	168	2.8	20.9	67.8	147	0.7	5.2	16.1	35	7.1	52.2	161.4	350
Bulgaria	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0	0	0
Czech Republic	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	29	45	82	118
Denmark	48	91	135	170	52	119	166	199	0	0	0	0	100	210	301	370
Germany	39	165	338	547	130	258	400	521	27	42	62	77	196	465	800	1144
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
reland	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	10	18	51	84
Greece	ω	14	104	229	_	သ	23	50	n.a.	n.a.	n.a.	n.a.	4	17	127	279
Spain	4	5	7	10	4	12	23	41	0	0	0	0	∞	17	31	51
France	27	664	1080	1280	49	222	425	570	n.a.	n.a.	n.a.	n.a.	76	886	1505	1850
[taly	16	1127	1566	2175	4	40	145	522	2	105	146	203	21	1273	1857	2900
Cyprus	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0.34	1.61	2.97
Latvia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0	2	4
Lithuania	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0	6	14
Luxembourg	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	_	4	17
Hungary	n.a.	0	2	7	n.a.	5	28	107	n.a.	_	7	29	n.a.	6	37	143
Malta	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	35	81	117	n.a.	90	161	242	n.a.	0	သ	=	54	132	252	377
Austria	0	38	55	105	0	10	14	26	0	48	68	131	69	96	137	263
Poland	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	25	72	148
Portugal	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0	n.a.	n.a.
Romania	0	0	_	4	0	0	2	∞	0	0	0	0	0	0	ω	12
Slovenia	0	_	7	14	0	4	26	38	0	2	5	5	2	∞	37	58
Slovakia	0	0	_	ω	0	0	2	4	0	0	_	သ	0	0	4	10
Finland	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	40	230	530	660
Sweden	0	50	100	150	0	272	544	815	0	27	54	80	0	349	697	1046
United Kingdom	n.a.	66	194	1301	n.a.	120	354	953	n.a.	n.a.	n.a.	n.a.	0	186	548	2254
All Member States (total)	140.5	2282.1	3748.5	6280	242.8	1175.9	2380.8	4243	29.7	230.2	362.1	574	616.1	4016.54	7246.01	12154.97

For Ireland, Lithuania, Luxembourg and Finland (and the Netherlands and Austria in 2005) no breakdown into source types has been provided. Therefore, the sum of all categories is lower than the value for All Member States (total).

Figure 59: Calculated per capita (2008) thermal energy for total heat pump [toe/1000 inhabitants] for the period 2005 - 2020, all source types

Table 140: Calculated per capita (2008) thermal energy for total heat pump [toe/1000 inhabitants] for the period 2005 - 2020, all source types

Belgium Bulgaria Czech Republic Denmark Germany	2005 [toe/1000 inhabitants] 1 0 3	2010 [toe/1000 inhabitants] 5 0	2015 [toe/1000 inhabitants]	2020 [toe/1000 inhabitants]
Bulgaria Czech Republic Denmark Germany	1 0 3	5 0	15	
Bulgaria Czech Republic Denmark Germany	0 3	0		33
Czech Republic Denmark Germany	3			33
Denmark Germany			0	0
Germany	10	4	8	11
	18	38	55	68
	2	6	10	14
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	2	4	12	19
Greece	0	2	11	25
Spain	0	0	1	1
France	1	14	24	29
Italy	0	21	31	49
Cyprus	0	0	2	4
Latvia	0	0	1	2
Lithuania	0	0	2	4
Luxembourg	0	2	8	35
Hungary	n.a.	1	4	14
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	3	8	15	23
Austria	8	12	16	32
Poland	n.a.	1	2	4
Portugal	0	0	n.a.	n.a.
Romania	0	0	0	1
Slovenia	1	4	18	29
Slovakia	0	0	1	2
Finland	8	43	100	125
Sweden	0	38	76	114
United Kingdom	0	3	9	37
All Member States (average)	1	8	15	24

The population data can be viewed in Table 14 (page 32)

Figure 60: Calculated per surface area (2004) thermal energy for total heat pumps [toe/km²] for the period 2005 - 2020, all source types

Table 141: Calculated per surface area (2004) thermal energy for total heat pumps [toe/km 2] for the period 2005 - 2020, all source types

	$\frac{2005}{[\text{toe/km}^2]}$	$\frac{2010}{\left[\text{toe/km}^2\right]}$	2015 [toe/km ²]	2020 [toe/km ²]
Belgium	0	2	5	11
Bulgaria	0	0	0	0
Czech Republic	0	1	1	1
Denmark	2	5	7	9
Germany	1	1	2	3
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0	0	1	1
Greece	0	0	1	2
Spain	0	0	0	0
France	0	1	2	3
Italy	0	4	6	10
Cyprus	0	0	0	0
Latvia	0	0	0	0
Lithuania	0	0	0	0
Luxembourg	0	0	2	7
Hungary	n.a.	0	0	2
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	1	3	6	9
Austria	1	1	2	3
Poland	n.a.	0	0	0
Portugal	0	0	n.a.	n.a.
Romania	0	0	0	0
Slovenia	0	0	2	3
Slovakia	0	0	0	0
Finland	0	1	2	2
Sweden	0	1	2	2
United Kingdom	0	1	2	9
All Member States (average)	0	1	2	3

The surface area data can be viewed in Table 14 (page 32)

Bioethanol / bio-ETBE in transport

Figure 61: Projected total bioethanol / bio-ETBE in renewable transport [ktoe] for the period 2005 - 2020

Table 142: Projected total bioethanol / bio-ETBE in renewable transport [ktoe] for the period 2005 - 2020

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	0	37	47	91	1
Bulgaria	0	0	19	60	1
Czech Republic	0	50	91	128	2
Denmark	0	13	95	94	1
Germany	144	639	996	857	12
Estonia	0	0	14	38	1
Ireland	0	40	90	139	2
Greece	n.a.	43	256	414	6
Spain	113	232	301	400	5
France	75	550	550	650	9
Italy	0	148	374	600	8
Cyprus	0	0	3	15	0
Latvia	0	14	19	18	0
Lithuania	1	13	30	36	0
Luxembourg	0	5	9	23	0
Hungary	5	34	106	304	4
Malta	n.a.	2	4	6	0
Netherlands	0	168	217	282	4
Austria	0	54	61	80	1
Poland	28	279	334	451	6
Portugal	0	0	24	27	0
Romania	n.a.	75	121	163	2
Slovenia	0	4	8	19	0
Slovakia	0	15	30	75	1
Finland	0	70	120	130	2
Sweden	144	251	358	465	6
United Kingdom	18	135	692	1743	24
All Member States (total)	528	2871	4968	7307	100

More information on additional information on bioethanol / bio-ETBE in renewable transport (Article 21.2 and imported bioethanol / bio-ETBE) is presented in Table 144 on page 180.

Figure 62: Calculated average annual growth for bioethanol / bio-ETBE in renewable transport [%/year] for four periods

Table 143: Calculated average annual growth for bioethanol / bio-ETBE in renewable transport [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	n.a.	4.9	14.1	9.4
Bulgaria	n.a.	n.a.	25.9	n.a.
Czech Republic	n.a.	12.7	7.1	9.9
Denmark	n.a.	48.9	-0.2	21.9
Germany	34.7	9.3	-3.0	3.0
Estonia	n.a.	n.a.	22.1	n.a.
Ireland	n.a.	17.6	9.1	13.3
Greece	n.a.	42.9	10.1	25.4
Spain	15.5	5.3	5.9	5.6
France	49.0	0.0	3.4	1.7
Italy	n.a.	20.4	9.9	15.0
Cyprus	n.a.	n.a.	41.4	n.a.
Latvia	n.a.	6.3	-1.1	2.5
Lithuania	67.0	18.2	3.7	10.7
Luxembourg	n.a.	12.5	20.6	16.5
Hungary	46.7	25.5	23.5	24.5
Malta	n.a.	16.4	9.1	12.7
Netherlands	n.a.	5.3	5.4	5.3
Austria	n.a.	2.5	5.6	4.0
Poland	58.4	3.7	6.2	4.9
Portugal	n.a.	n.a.	2.4	n.a.
Romania	n.a.	10.0	6.1	8.1
Slovenia	n.a.	14.9	18.9	16.9
Slovakia	n.a.	14.9	20.1	17.5
Finland	n.a.	11.4	1.6	6.4
Sweden	11.8	7.4	5.4	6.4
United Kingdom	49.6	38.7	20.3	29.2
All Member States (average)	40.3	11.6	8.0	9.8

Table 144: Projected bioethanol / bio-ETBE in renewable transport [ktoe] for the period 2005 - 2020, indicating the contribution of Article 21.2 and imported bioethanol / bio-ETBE

		Bioethanol / bio	Bioethanol / bio-ETBE Article 21.2			Bioethanol / bio-ETBE imported	ETBE imported			Total bioethanol / bio-ETBE	ol / bio-ETBE	
	2005	2010	2015	2020	2005	2010	2015	2020	2005	2010	2015	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[ktoe]
Belgium	0	0	0	0	0	0	0	0	0	37	47	91
Bulgaria	0	0	0	0	0	0	0	10	0	0	19	60
Czech Republic	0	0	0	29	0	17	24	29	0	50	91	128
Denmark	0	0	~	47	0	13	95	94	0	13	95	94
Germany	0	0	32 to 107	32 to 442	0	189	482	278	144	639	996	857
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0	14	38
Ireland	n.a.	0	0	0	n.a.	3	49	99	0	40	90	139
Greece	n.a.	n.a.	n.a.	n.a.	n.a.	43	256	414	n.a.	43	256	414
Spain	0	0	0	52	0	25	0	0	113	232	301	400
France	n.a.	n.a.	n.a.	n.a.	0	50	50	50	75	550	550	650
Italy	0	19	60	100	0	18	109	200	0	148	374	600
Cyprus	0	0	0	15	0	0	ω	15	0	0	သ	15
Latvia	0	0	0	18	0	0	0	9	0	14	19	18
Lithuania	0	0	n.a.	0	0	0	0	0	_	13	30	36
Luxembourg	0	0	0	0	0	5	9	23	0	5	9	23
Hungary	0	0	0	0	n.a.	n.a.	0	0	5	34	106	304
Malta	n.a.	n.a.	n.a.	n.a.	n.a.	2	4	6	n.a.	2	4	6
Netherlands	0	17	22	34	0	152	196	240	0	168	217	282
Austria	0	0	0	0	0	14	12	==	0	54	61	80
Poland	0	0	0	4	n.a.	n.a.	n.a.	n.a.	28	279	334	451
Portugal	0	0	0	0	0	0	0	0	0	0	24	27
Romania	n.a.	n.a.	n.a.	35	n.a.	n.a.	n.a.	n.a.	n.a.	75	121	163
Slovenia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	4	∞	19
Slovakia	0	0	0	25	0	0	0	0	0	15	30	75
Finland	0	0	20	40	0	n.a.	n.a.	0	0	70	120	130
Sweden	0	0	0	0	117	140	185	292	144	251	358	465
United Kingdom	0	0	0	0	n.a.	112	574	1447	18	135	692	1743
All Member States (total)	0	36	180	676	117	783	2048	3216	528	2871	4968	7307

The German Action Plan defines a data range for Article 21.2 Bioethanol/bio-ETBE. In the table the range is provided, but the 'total' value uses the average value of the range (69.5 ktoe for 2015 and 237.0 ktoe for 2020).

Figure 63: Calculated per capita (2008) bioethanol / bio-ETBE [toe/1000 inhabitants] for the period 2005 - 2020

Table 145: Calculated per capita (2008) bioethanol / bio-ETBE [toe/1000 inhabitants] for the period 2005 - 2020

	2005	2010	2015	2020
	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]
Belgium	0	3	4	9
Bulgaria	0	0	2	8
Czech Republic	0	5	9	12
Denmark	0	2	17	17
Germany	2	8	12	10
Estonia	0	0	10	28
Ireland	0	9	20	32
Greece	n.a.	4	23	37
Spain	2	5	7	9
France	1	9	9	10
Italy	0	2	6	10
Cyprus	0	0	3	19
Latvia	0	6	8	8
Lithuania	0	4	9	11
Luxembourg	0	10	19	48
Hungary	0	3	11	30
Malta	n.a.	4	9	14
Netherlands	0	10	13	17
Austria	0	6	7	10
Poland	1	7	9	12
Portugal	0	0	2	3
Romania	n.a.	3	6	8
Slovenia	0	2	4	9
Slovakia	0	3	6	14
Finland	0	13	23	25
Sweden	16	27	39	51
United Kingdom	0	2	11	28
All Member States (average)	1	6	10	15

The population data can be viewed in Table 14 (page 32)

Figure 64: Calculated per surface area (2004) bioethanol / bio-ETBE [toe/km²] for the period 2005 - 2020

Table 146: Calculated per surface area (2004) bioethanol / bio-ETBE [toe/km²] for the period 2005 - 2020

	2005 [toe/km ²]	2010 [toe/km ²]	2015 [toe/km ²]	2020 [toe/km ²]
Belgium	0	1	2	3
Bulgaria	0	0	0	1
Czech Republic	0	1	1	2
Denmark	0	0	2	2
Germany	0	2	3	2
Estonia	0	0	0	1
Ireland	0	1	1	2
Greece	n.a.	0	2	3
Spain	0	0	1	1
France	0	1	1	1
Italy	0	0	1	2
Cyprus	0	0	0	2
Latvia	0	0	0	0
Lithuania	0	0	0	1
Luxembourg	0	2	3	9
Hungary	0	0	1	3
Malta	n.a.	6	12	18
Netherlands	0	4	5	7
Austria	0	1	1	1
Poland	0	1	1	1
Portugal	0	0	0	0
Romania	n.a.	0	1	1
Slovenia	0	0	0	1
Slovakia	0	0	1	2
Finland	0	0	0	0
Sweden	0	1	1	1
United Kingdom	0	1	3	7
All Member States (average)	0	1	1	2

The surface area data can be viewed in Table 14 (page 32)

Biodiesel in transport

Figure 65: Projected total biodiesel in renewable transport [ktoe] for the period 2005 - 2020

 $Table\ 147:\ Projected\ total\ biodiesel\ in\ renewable\ transport\ [ktoe]\ for\ the\ period\ 2005\ -\ 2020$

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	0	292	449	698	3
Bulgaria	0	33	140	220	1
Czech Republic	3	193	347	495	2
Denmark	0	18	152	167	1
Germany	1598	2790	2074	4443	21
Estonia	0	1	21	51	0
Ireland	1	94	209	342	2
Greece	1	64	130	203	1
Spain	145	1471	2169	3100	14
France	328	2165	2375	2850	13
Italy	179	868	1374	1880	9
Cyprus	0	15.7	19.8	23.2	0
Latvia	3	25	20	28	0
Lithuania	3	42	79	131	1
Luxembourg	1	37	72	193	1
Hungary	0	110	144	202	1
Malta	n.a.	1.23	1.32	7.03	0
Netherlands	0	139	350	552	3
Austria	35	276	309	410	2
Poland	15	687	993	1451	7
Portugal	0	281	405	450	2
Romania	n.a.	149	242	326	2
Slovenia	0	37	72	174	1
Slovakia	0	67	107	110	1
Finland	0	150	300	430	2
Sweden	9	89	170	251	1
United Kingdom	57	861	1818	2462	11
All Member States (total)	2378	10955.93	14542.12	21649.23	100

More information on additional information on biodiesel in renewable transport (Article 21.2 and imported biodiesel) is presented in Table 149 on page 186.

Figure 66: Calculated average annual growth for biodiesel in renewable transport [%/year] for four periods

Table 148: Calculated average annual growth for biodiesel in renewable transport [%/year] for four periods

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
Belgium	n.a.	9.0	9.2	9.1
Bulgaria	n.a.	33.5	9.5	20.9
Czech Republic	130.0	12.4	7.4	9.9
Denmark	n.a.	53.2	1.9	25.0
Germany	11.8	-5.8	16.5	4.8
Estonia	n.a.	83.8	19.4	48.2
Ireland	148.1	17.3	10.4	13.8
Greece	129.7	15.2	9.3	12.2
Spain	58.9	8.1	7.4	7.7
France	45.9	1.9	3.7	2.8
Italy	37.1	9.6	6.5	8.0
Cyprus	n.a.	4.7	3.2	4.0
Latvia	52.8	-4.4	7.0	1.1
Lithuania	69.5	13.5	10.6	12.0
Luxembourg	105.9	14.2	21.8	18.0
Hungary	n.a.	5.5	7.0	6.3
Malta	n.a.	1.4	39.7	19.0
Netherlands	n.a.	20.3	9.5	14.8
Austria	51.1	2.3	5.8	4.0
Poland	114.9	7.6	7.9	7.8
Portugal	n.a.	7.6	2.1	4.8
Romania	n.a.	10.2	6.1	8.1
Slovenia	n.a.	14.2	19.3	16.7
Slovakia	n.a.	9.8	0.6	5.1
Finland	n.a.	14.9	7.5	11.1
Sweden	58.1	13.8	8.1	10.9
United Kingdom	72.1	16.1	6.3	11.1
All Member States (average)	35.7	5.8	8.3	7.0

Table 149: Projected biodiesel in renewable transport [ktoe] for the period 2005 - 2020, indicating the contribution of Article 21.2 and imported biodiesel

		Biodiesel /	Biodiesel Article 21.2			Biodiesel imported	imported			Total biodiese	odiesel	
	2005 [ktoe]	2010 [ktoe]	2015 [ktoe]	2020 [ktoe]	2005 [ktoe]	2010 [ktoe]	2015 [ktoe]	2020 [ktoe]	2005 [ktoe]	2010 [ktoe]	2015 [ktoe]	2020 [ktoe]
Belgium	0	0	0	127	0	0	0	0	0	292	449	698
Bulgaria	0	0	0	0	0	0	0	0	0	33	140	220
Czech Republic	0	0	0	215	6	64	104	143	3	193	347	495
Denmark	0	0	13	84	0	18	152	167	0	18	152	167
Germany	0	98	98	98	0	1459	610	2846	1598	2790	2074	4443
Estonia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	_	21	51
Ireland	n.a.	0	0	0	n.a.	4	125	240	_	94	209	342
Greece	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	-	64	130	203
Spain	0	50	161	200	0	910	325	310	145	1471	2169	3100
France	n.a.	n.a.	n.a.	n.a.	13	400	400	400	328	2165	2375	2850
Italy	21	72	161	250	0	73	436	800	179	868	1374	1880
Cyprus	0	0	2	23	0	9	11	23	0	16	20	23
Latvia	0	0	0	15	0	0	0	~	3	25	20	28
Lithuania	0	0	0	0	0	0	0	0	3	42	79	131
Luxembourg	0	0	0	0	_	37	72	193	_	37	72	193
Hungary	0	18	20	22	0	0	0	0	0	110	144	202
Malta	n.a.	_	_	ယ	n.a.	0	0	4	n.a.	_	_	7
Netherlands	0	139	70	121	0	69	245	276	0	139	350	552
Austria	0	0	0	0	34	153	152	175	35	276	309	410
Poland	0	0	88	132	n.a.	n.a.	n.a.	n.a.	15	687	993	1451
Portugal	0	4	6	∞	0	0	0	0	0	281	405	450
Romania	n.a.	n.a.	n.a.	70	n.a.	n.a.	n.a.	n.a.	n.a.	149	242	326
Slovenia	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	37	72	174
Slovakia	0	0	0	30	0	0	0	0	0	67	107	110
Finland	0	0	50	140	0	n.a.	n.a.	0	0	150	300	430
Sweden	0	0	0	0	0	0	0	0	9	89	170	251
United Kingdom	0	0	0	0	n.a.	784	1654	2240	57	861	1818	2462
All Member States (total)	21	383	(70)	1530		2000		2005	2220	10050	1/5/17	21649

Figure 67: Calculated per capita (2008) in renewable transport for total biodiesel [toe/1000 inhabitants] for the period 2005 - 2020

Table 150: Calculated per capita (2008) in renewable transport for total biodiesel [toe/1000 inhabitants] for the period 2005 - 2020

	2005	2010	2015	2020
	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]
Belgium	0	27	42	65
Bulgaria	0	4	18	29
Czech Republic	0	19	33	48
Denmark	0	3	28	30
Germany	19	34	25	54
Estonia	0	1	16	38
Ireland	0	21	47	78
Greece	0	6	12	18
Spain	3	32	48	68
France	5	34	37	45
Italy	3	15	23	32
Cyprus	0	20	25	29
Latvia	1	11	9	12
Lithuania	1	12	23	39
Luxembourg	2	76	149	399
Hungary	0	11	14	20
Malta	n.a.	3	3	17
Netherlands	0	8	21	34
Austria	4	33	37	49
Poland	0	18	26	38
Portugal	0	26	38	42
Romania	n.a.	7	11	15
Slovenia	0	18	36	87
Slovakia	0	12	20	20
Finland	0	28	57	81
Sweden	1	10	19	27
United Kingdom	1	14	30	40
All Member States (average)	5	22	29	44

The population data can be viewed in Table 14 (page 32)

Figure 68: Calculated per surface area (2004) in renewable transport for total biodiesel [toe/km²] for the period 2005 - 2020

Table 151: Calculated per surface area (2004) in renewable transport for total biodiesel [toe/km²] for the period 2005 - 2020

	2005 [toe/km ²]	$\frac{2010}{\left[\text{toe/km}^2\right]}$	2015 [toe/km ²]	2020 [toe/km ²]
Belgium	0	10	15	23
Bulgaria	0	0	1	2
Czech Republic	0	2	4	6
Denmark	0	0	4	4
Germany	4	8	6	12
Estonia	0	0	0	1
Ireland	0	1	3	5
Greece	0	0	1	2
Spain	0	3	4	6
France	1	3	4	5
Italy	1	3	5	6
Cyprus	0	2	2	3
Latvia	0	0	0	0
Lithuania	0	1	1	2
Luxembourg	0	14	28	75
Hungary	0	1	2	2
Malta	n.a.	4	4	22
Netherlands	0	3	8	13
Austria	0	3	4	5
Poland	0	2	3	5
Portugal	0	3	4	5
Romania	n.a.	1	1	1
Slovenia	0	2	4	9
Slovakia	0	1	2	2
Finland	0	0	1	1
Sweden	0	0	0	1
United Kingdom	0	4	7	10
All Member States (average)	1	2	3	5

The surface area data can be viewed in Table 14 (page 32)

Hydrogen from renewables in transport

Figure 69: Projected hydrogen from renewables in transport [ktoe] for the period 2005 - 2020

Table 152: Projected total hydrogen from renewables in transport [ktoe] for the period 2005 - 2020

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	0	0	0	0	0
Bulgaria	0	0	0	0	0
Czech Republic	0	0	0	0	0
Denmark	0	0	0	0	0
Germany	0	0	0	0	0
Estonia	0	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	0	0	0	0
Greece	n.a.	n.a.	n.a.	n.a.	n.a.
Spain	0	0	0	0	0
France	0	0	0	0	0
Italy	0	0	0	0	0
Cyprus	0	0	0	0	0
Latvia	0	0	0	0	0
Lithuania	0	0	0	0	0
Luxembourg	0	0	0	0	0
Hungary	0	0	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	0	0	0
Austria	0	0	0	0	0
Poland	n.a.	n.a.	n.a.	n.a.	n.a.
Portugal	0	0	0	0	0
Romania	n.a.	n.a.	n.a.	2	100
Slovenia	n.a.	n.a.	n.a.	n.a.	n.a.
Slovakia	0	0	0	0	0
Finland	0	0	0	0	0
Sweden	0	0	0	0	0
United Kingdom	0	0	0	0	0
All Member States (total)	0	0	0	2	100

Figure 70: Calculated average annual growth for hydrogen from renewables in transport [%/year] for four periods

Table 153: Calculated average annual growth for hydrogen from renewables in transport [%/year] for four periods

	2005 - 2010 [%/year]	2010 - 2015 [%/year]	2015 - 2020 [%/year]	2010 - 2020 [%/year]
	[707 year]	[707year]	[707year]	[70/year]
Belgium	n.a.	n.a.	n.a.	n.a.
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	n.a.	n.a.	n.a.	n.a.
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	n.a.	n.a.	n.a.	n.a.
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	n.a.	n.a.	n.a.	n.a.
Greece	n.a.	n.a.	n.a.	n.a.
Spain	n.a.	n.a.	n.a.	n.a.
France	n.a.	n.a.	n.a.	n.a.
Italy	n.a.	n.a.	n.a.	n.a.
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	n.a.	n.a.
Lithuania	n.a.	n.a.	n.a.	n.a.
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	n.a.	n.a.	n.a.
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	n.a.	n.a.	n.a.	n.a.
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	n.a.	n.a.	n.a.	n.a.
Romania	n.a.	n.a.	n.a.	n.a.
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	n.a.	n.a.	n.a.	n.a.
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	n.a.	n.a.	n.a.	n.a.
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	n.a.	n.a.	n.a.	n.a.

Figure 71: Calculated per capita (2008) hydrogen from renewables in transport [toe/1000 inhabitants] for the period 2005 - 2020

Table 154: Calculated per capita (2008) hydrogen from renewables in transport [toe/1000 inhabitants] for the period 2005 - 2020

	2005	2010	2015	2020
	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]
Belgium	0	0	0	0
Bulgaria	0	0	0	0
Czech Republic	0	0	0	0
Denmark	0	0	0	0
Germany	0	0	0	0
Estonia	0	n.a.	n.a.	n.a.
Ireland	n.a.	0	0	0
Greece	n.a.	n.a.	n.a.	n.a.
Spain	0	0	0	0
France	0	0	0	0
Italy	0	0	0	0
Cyprus	0	0	0	0
Latvia	0	0	0	0
Lithuania	0	0	0	0
Luxembourg	0	0	0	0
Hungary	0	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	0	0
Austria	0	0	0	0
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	0	0	0	0
Romania	n.a.	n.a.	n.a.	0
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	0	0	0	0
Finland	0	0	0	0
Sweden	0	0	0	0
United Kingdom	0	0	0	0
All Member States (average)	0	0	0	0

The population data can be viewed in Table 14 (page 32)

Figure 72: Calculated per surface area (2004) hydrogen from renewables in transport [toe/km²] for the period 2005 - 2020

Table 155: Calculated per surface area (2004) hydrogen from renewables in transport [toe/km²] for the period 2005 - 2020

	$\frac{2005}{[\text{toe/km}^2]}$	$\frac{2010}{[\text{toe/km}^2]}$	2015 [toe/km ²]	2020 [toe/km ²]
Belgium	0	0	0	0
Bulgaria	0	0	0	0
Czech Republic	0	0	0	0
Denmark	0	0	0	0
Germany	0	0	0	0
Estonia	0	n.a.	n.a.	n.a.
Ireland	n.a.	0	0	0
Greece	n.a.	n.a.	n.a.	n.a.
Spain	0	0	0	0
France	0	0	0	0
Italy	0	0	0	0
Cyprus	0	0	0	0
Latvia	0	0	0	0
Lithuania	0	0	0	0
Luxembourg	0	0	0	0
Hungary	0	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	0	0	0	0
Austria	0	0	0	0
Poland	n.a.	n.a.	n.a.	n.a.
Portugal	0	0	0	0
Romania	n.a.	n.a.	n.a.	0
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	0	0	0	0
Finland	0	0	0	0
Sweden	0	0	0	0
United Kingdom	0	0	0	0
All Member States (average)	0	0	0	0

The surface area data can be viewed in Table 14 (page 32)

Renewable electricity in transport

Figure 73: Projected total renewable electricity in transport [ktoe] for the period 2005 - 2020

Table 156: Projected total renewable electricity in transport [ktoe] for the period 2005 - 2020

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	16	24	47	97	3
Bulgaria	3	3	7	15	0
Czech Republic	6	7	16	19	1
Denmark	9	11	19	29	1
Germany	169	219	374	667	21
Estonia	0	0	0	1	0
Ireland	1	1	1	37	1
Greece	n.a.	2	7	17	1
Spain	108	99	224	381	12
France	141	183	260	402	13
Italy	139	170	265	369	12
Cyprus	0	0	0	1	0
Latvia	4	3	5	6	0
Lithuania	0	0	2	3	0
Luxembourg	1	2	4	10	0
Hungary	0	6	15	24	1
Malta	n.a.	0	0	1	0
Netherlands	8	12	23	71	2
Austria	162	171	191	272	9
Poland	0	15	23	50	2
Portugal	12	20	37	58	2
Romania	41	36	45	53	2
Slovenia	4	5	7	11	0
Slovakia	8	8	10	17	1
Finland	20	20	20	40	1
Sweden	121	147	173	198	6
United Kingdom	113	136	192	267	9
All Member States (total)	1086	1301	1968	3114	100

More information on additional information on renewable electricity in transport (road and non-road transport) is presented in Table 158 on page 198.

Figure 74: Calculated average annual growth for renewable electricity in transport [%/year] for four periods

Table 157: Calculated average annual growth for renewable electricity in transport [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	8.4	14.4	15.6	15.0
Bulgaria	0.0	18.5	16.5	17.5
Czech Republic	3.1	18.0	3.5	10.5
Denmark	4.1	11.6	8.8	10.2
Germany	5.3	11.3	12.3	11.8
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	0.0	0.0	105.9	43.5
Greece	n.a.	24.6	18.0	21.3
Spain	-1.7	17.7	11.2	14.4
France	5.4	7.3	9.1	8.2
Italy	4.1	9.3	6.8	8.1
Cyprus	n.a.	n.a.	15.7	n.a.
Latvia	-5.6	10.8	3.7	7.2
Lithuania	n.a.	39.8	9.3	23.6
Luxembourg	14.9	14.9	20.1	17.5
Hungary	n.a.	20.1	9.9	14.9
Malta	n.a.	n.a.	38.0	n.a.
Netherlands	8.4	13.9	25.3	19.5
Austria	1.1	2.2	7.3	4.8
Poland	n.a.	8.9	16.8	12.8
Portugal	10.8	13.1	9.4	11.2
Romania	-2.5	4.7	3.0	3.9
Slovenia	4.6	7.0	9.5	8.2
Slovakia	0.0	4.6	11.2	7.8
Finland	0.0	0.0	14.9	7.2
Sweden	4.0	3.3	2.7	3.0
United Kingdom	3.8	7.1	6.8	7.0
All Member States (average)	3.7	8.6	9.6	9.1

0

0

All Member States (total)

Table 158: Projected renewable electricity in transport [ktoe] for the period 2005 - 2020, indicating the contribution of road and non-road transport

Figure 75: Calculated per capita (2008) for total renewable electricity in transport [toe/1000 inhabitants] for the period 2005 - 2020

Table 159: Calculated per capita (2008) for total renewable electricity in transport [toe/1000 inhabitants] for the period 2005 - 2020

	2005	2010	2015	2020
	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]
Belgium	1	2	4	9
Bulgaria	0	0	1	2
Czech Republic	1	1	2	2
Denmark	2	2	3	5
Germany	2	3	5	8
Estonia	0	0	0	1
Ireland	0	0	0	8
Greece	n.a.	0	1	1
Spain	2	2	5	8
France	2	3	4	6
Italy	2	3	4	6
Cyprus	0	0	0	1
Latvia	2	1	2	3
Lithuania	0	0	0	1
Luxembourg	2	4	8	21
Hungary	0	1	1	2
Malta	n.a.	0	0	2
Netherlands	0	1	1	4
Austria	19	21	23	33
Poland	0	0	1	1
Portugal	1	2	3	5
Romania	2	2	2	2
Slovenia	2	2	3	5
Slovakia	1	1	2	3
Finland	4	4	4	8
Sweden	13	16	19	22
United Kingdom	2	2	3	4
All Member States (average)	2	3	4	6

The population data can be viewed in Table 14 (page 32).

Figure 76: Calculated per surface area (2004) for total renewable electricity in transport [toe/km²] for the period 2005 - 2020

Table 160: Calculated per surface area (2004) for total renewable electricity in transport [toe/km²] for the period 2005 - 2020

	2005 [toe/km ²]	$\frac{2010}{[\text{toe/km}^2]}$	2015 [toe/km ²]	2020 [toe/km 2]
Belgium	1	1	2	3
Bulgaria	0	0	0	0
Czech Republic	0	0	0	0
Denmark	0	0	0	1
Germany	0	1	1	2
Estonia	0	0	0	0
Ireland	0	0	0	1
Greece	n.a.	0	0	0
Spain	0	0	0	1
France	0	0	0	1
Italy	0	1	1	1
Cyprus	0	0	0	0
Latvia	0	0	0	0
Lithuania	0	0	0	0
Luxembourg	0	1	2	4
Hungary	0	0	0	0
Malta	n.a.	0	0	2
Netherlands	0	0	1	2
Austria	2	2	2	3
Poland	0	0	0	0
Portugal	0	0	0	1
Romania	0	0	0	0
Slovenia	0	0	0	1
Slovakia	0	0	0	0
Finland	0	0	0	0
Sweden	0	0	0	0
United Kingdom	0	1	1	1
All Member States (average)	0	0	0	1

The surface area data can be viewed in Table 14 (page 32).

Other biofuels in transport

ECN-E--10-069 201

Figure 77: Projected total other biofuels in transport [ktoe] for the period 2005 - 2020

Table 161: Projected total other biofuels in transport [ktoe] for the period 2005 - 2020

	2005	2010	2015	2020	2020
	[ktoe]	[ktoe]	[ktoe]	[ktoe]	[%]
Belgium	0	0	0	0	0
Bulgaria	0	0	0	7	1
Czech Republic	0	0	0	49	6
Denmark	0	0	0	0	0
Germany	177	102	35	173 to 261	27
Estonia	0	0	0	0	0
Ireland	1	1	1	1	0
Greece	n.a.	n.a.	n.a.	n.a.	n.a.
Spain	0	0	1	4	1
France	0	0	30	160	20
Italy	0	5	27	50	6
Cyprus	0	0	0	0	0
Latvia	0	0	9	31	4
Lithuania	0	0	0	0	0
Luxembourg	0	0	0	0	0
Hungary	0	0	1	5	1
Malta	n.a.	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.	n.a.
Austria	8	63	71	94	12
Poland	n.a.	n.a.	26	66	8
Portugal	0	0	0	0	0
Romania	n.a.	n.a.	n.a.	7	1
Slovenia	n.a.	n.a.	n.a.	n.a.	n.a.
Slovakia	0	0	0	5	1
Finland	0	0	0	0	0
Sweden	13	40	67	94	12
United Kingdom	0	0	0	0	0
All Member States (total)	199	211	268	789	100

More information on additional information on other biofuels in transport (Article 21.2) is presented in Table 163 on page 204. The German Action Plan defines a *data range* for 'total other biofuels' in 2020. In the table the range is provided, but the total value for all Member States and the share in the last column use the average value of the range (217.0 ktoe).

Figure 78: Calculated average annual growth for other biofuels in transport [%/year] for four periods

Table 162: Calculated average annual growth for other biofuels in transport [%/year] for four periods

	2005 - 2010	2010 - 2015	2015 - 2020	2010 - 2020
	[%/year]	[%/year]	[%/year]	[%/year]
Belgium	n.a.	n.a.	n.a.	n.a.
Bulgaria	n.a.	n.a.	n.a.	n.a.
Czech Republic	n.a.	n.a.	n.a.	n.a.
Denmark	n.a.	n.a.	n.a.	n.a.
Germany	-10.4	-19.3	44.0	7.8
Estonia	n.a.	n.a.	n.a.	n.a.
Ireland	12.5	0.0	0.0	0.0
Greece	n.a.	n.a.	n.a.	n.a.
Spain	n.a.	n.a.	32.0	n.a.
France	n.a.	n.a.	39.8	n.a.
Italy	n.a.	40.1	13.1	25.9
Cyprus	n.a.	n.a.	n.a.	n.a.
Latvia	n.a.	n.a.	28.1	n.a.
Lithuania	n.a.	n.a.	n.a.	n.a.
Luxembourg	n.a.	n.a.	n.a.	n.a.
Hungary	n.a.	n.a.	38.0	n.a.
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	51.1	2.4	5.8	4.1
Poland	n.a.	n.a.	20.5	n.a.
Portugal	n.a.	n.a.	n.a.	n.a.
Romania	n.a.	n.a.	n.a.	n.a.
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	n.a.	n.a.	n.a.	n.a.
Finland	n.a.	n.a.	n.a.	n.a.
Sweden	25.2	10.9	7.0	8.9
United Kingdom	n.a.	n.a.	n.a.	n.a.
All Member States (average)	1.2	4.9	24.1	14.1

The German Action Plan defines a *data range* for 'total other biofuels' in 2020. In this table the average value of the range is used, see Table 161 on page 202.

ECN-E--10-069 203

Table 163: Projected other biofuels in transport [ktoe] for the period 2005 - 2020, indicating the contribution of Article 21.2 fuels

			Other biofuels Article 21.2			Total o	ther bi	Total other biofuels in transport
	2005 [ktoe]	2010 [ktoe]	2015 [ktoe]	2020 [ktoe]	2005 [ktoe]		2010 [ktoe]	2010 2015 [ktoe] [ktoe]
Belgium	0	0	0	0	0		0	0 0
Bulgaria	0	0	0	4	0		0	0 0
Czech Republic	0	0	0	48	0		0	
Denmark	0	0	0	0	0		0	
Germany	0	0	4	26 to 115	177		102	102 35
Estonia	n.a.	n.a.	n.a.	n.a.	0		0	
Ireland	_	1	_	1	_		1	
Greece	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	
Spain	0	0	0	0	0		0	0 1
France	0	0	0	50	0		0	
Italy	0	S.	27	50	0		5	5 27
Cyprus	0	0	0	0	0		0	
Latvia	0	0	0	11	0		0	
Lithuania	0	0	0	0	0		0	
Luxembourg	0	0	0	0	0		0	
Hungary	0	0	_	y.	0		0	
Malta	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a. n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	
Austria	0	0	0	0	8		63	
Poland	n.a.	n.a.	26	66	n.a.		n.a.	
Portugal	0	0	0	0	0		0	0 0
Romania	n.a.	n.a.	n.a.	6	n.a.		n.a.	
Slovenia	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	
Slovakia	0	0	0	S	0		0	
Finland	0	0	0	0	0		0	
Sweden	13	40	67	94	13		40	40 67
United Kingdom	0	0	0	0	0		0	
All Member States (total)	14	46	126	410	199		211	211 268

Figure 79: Calculated per capita (2008) values for total other biofuels in transport [toe/1000 inhabitants] for the period 2005 - 2020

Table 164: Calculated per capita (2008) values for total other biofuels in transport [toe/1000 inhabitants] for the period 2005 - 2020

	2005	2010	2015	2020
	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]	[toe/1000 inhabitants]
Belgium	0	0	0	0
Bulgaria	0	0	0	1
Czech Republic	0	0	0	5
Denmark	0	0	0	0
Germany	2	1	0	3
Estonia	0	0	0	0
Ireland	0	0	0	0
Greece	n.a.	n.a.	n.a.	n.a.
Spain	0	0	0	0
France	0	0	0	3
Italy	0	0	0	1
Cyprus	0	0	0	0
Latvia	0	0	4	14
Lithuania	0	0	0	0
Luxembourg	0	0	0	0
Hungary	0	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	1	8	9	11
Poland	n.a.	n.a.	1	2
Portugal	0	0	0	0
Romania	n.a.	n.a.	n.a.	0
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	0	0	0	1
Finland	0	0	0	0
Sweden	1	4	7	10
United Kingdom	0	0	0	0
All Member States (average)	0	0	1	2

The population data can be viewed in Table 14 (page 32). The German Action Plan defines a *data range* for 'total other biofuels' in 2020. In this table the average value of the range is used, see Table 161 on page 202.

ECN-E--10-069 205

Figure 80: Calculated per surface area (2004) values for total other biofuels in transport [toe/km²] for the period 2005 - 2020

Table 165: Calculated per surface area (2004) values for total other biofuels in transport [toe/km²] for the period 2005 - 2020

	2005 [toe/km ²]	2010 [toe/km ²]	2015 [toe/km ²]	2020 [toe/km ²]
Belgium	0	0	0	0
Bulgaria	0	0	0	0
Czech Republic	0	0	0	1
Denmark	0	0	0	0
Germany	0	0	0	1
Estonia	0	0	0	0
Ireland	0	0	0	0
Greece	n.a.	n.a.	n.a.	n.a.
Spain	0	0	0	0
France	0	0	0	0
Italy	0	0	0	0
Cyprus	0	0	0	0
Latvia	0	0	0	0
Lithuania	0	0	0	0
Luxembourg	0	0	0	0
Hungary	0	0	0	0
Malta	n.a.	n.a.	n.a.	n.a.
Netherlands	n.a.	n.a.	n.a.	n.a.
Austria	0	1	1	1
Poland	n.a.	n.a.	0	0
Portugal	0	0	0	0
Romania	n.a.	n.a.	n.a.	0
Slovenia	n.a.	n.a.	n.a.	n.a.
Slovakia	0	0	0	0
Finland	0	0	0	0
Sweden	0	0	0	0
United Kingdom	0	0	0	0
All Member States (average)	0	0	0	0

The surface area data can be viewed in Table 14 (page 32). The German Action Plan defines a *data range* for 'total other biofuels' in 2020. In this table the average value of the range is used, see Table 161 on page 202.

Country Tables

ECN-E--10-069 207

Belgium 28 NOV 2011

Belgium

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 209 provides a background to the above figures.

Belgium 28 NOV 2011

				Ι,	2005					20	0					201	2					202	00]	Page
			[GWh]	[ktoe]	- 1	ات	=	의	_			-1	-1	[GWh]	[ktoe]	- 1	- 1	ر [%]ر	p[%]	[GWh]	[ktoe]	[%] _a		2[%]	[%]	
Renewable production	Blectricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower IMW - 10 MW Hydropower SIOMW	n.a. n.a. 350	n n n n n n 30 s										n.a. n.a. 301	n.a. n.a. 34			0.00	0.00	n.a. 1.a.	n.a. n.a.	0.00		0000	0000	103 103 103
		Geothernal	0	0										0	0	- 1		0.0	0.0	29		0.1		0.0	0.0	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	-0-	000	1									610	52 0 52			0.0	0.0	1139	808	6.0 6.0 6.0		0.0	0.0	121
		Tidal, wave and ocean energy	0	0										0	0	1		0.0	0:0	0	0	0:0		0.0	0.0	128
		Onshore wind Offshore wind Wind power (subtotal)	320 0 320	27 0 27	1									2100 3984 6084	181 343 523	1		2.0 3.9 5.9	0.8	4274 6200 10474	367 533 901	18.5 26.8 45.3		3.9 5.6 9.5	0.9 1.3 2.2	139 139 139
		Solid biomass Biogas Biofiquids Biomass (subtotal)	1521 235 35 540	131 20 3 46				2580 393 34 3007						5145 777 30 5952	442 67 512			5.0 0.0 5.8	1.1 0.0 1.2	9575 1439 25 11039	823 124 949	41.4 6.2 0.1 7.74		8.6 0.0 10.0	2.0 0.0 2.3	149 149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	671 1211	58 104 212				' '						13037	1121			12.7 12.7 12.7	2.7 2.7	23121	1988 1988 1988	100.0 100.0 100.0		20.9 20.9 20.9	4, 4, 4, 8, 8, 8	97
	Heating and cooling	Geothermal		3	l										4			0.0	0.0		9	0.2		0.0	0.0	154
		Solar thermal		3	1				123						91	1		0.4	0.2		199	7.7		6.0	0.5	160
		Solid biomass Brogans Brolquids Biomass (subtotal)		476 2 0 477	96.9 0.4 0.0 97.3	67.7 0.3 0.0 68.0	2.2 0.0 0.0 0.0 2.2 1.2	 	669 6 4 58	9 87.3 9 1.2 4 0.5 2 89.0	0.4 0.0 0.0 0.0 0.0 0.0 0.0	3.1 0.0 3.1	0.0 0.0 1.7		1138 26 114 1178	79.3 1.8 1.0 82.1	36.7 0.8 0.5 38.0	5.2 0.1 5.4	2.8 0.0 2.9		1947 55 32 2034	75.2 2.1 1.2 78.6	36.2 1.0 0.6 37.8	8.9 0.3 9.3	7.4 0.0 1.0 6.4	168 168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal leat pumps Renewahle energy from heat nums (suhtral)		4 & 1					144,8						88 98 16 16			0.3 0.1 0.1	0.0		168 147 35	6.5 7.7 4.1 5.7		0.8	4 4 1 8	47.1 47.1 47.1
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		491 164 191	1				767						1435 1435 1435	1		6.6 6.6 6.6	35.5		2588 2588 2588	100.0 100.0 100.0		911.9	63	- 62 – 92
	Transport	Bioethanol / bio-ETBE		0					3,						47			0.5	0.1		91	10.3		1.0	0.2	180
		Biodiesel		0					292						449	1		4.8	1.1		869	78.8		8.0	1.7	186
		Hydrogen from renewables		0	1										0	1		0.0	0.0		0	0.0		0.0	0.0	190
		Renewable electricity		16					25						47			0.5	0.1		76	10.9		Ξ	0.2	861
		Other biofuels		0	1						1				0	1	1	0.0	0.0		0	0.0		0.0	0.0	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)*		16 16 16 16					325						¥ £ £ ¥			& & & & & & & & & & & & & & & & & & &	5555		886 798 886 886	100.0 100.0 100.0		0.0.0.0.	21 1.9 1.9	
	All RES excl. co-operation mech.	h. Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		702 548 611	-				152 149¢ 1520	90	100.0 98.4				3096 3053 3099		100.0	33.3 32.8 33.3	7.5 7.4 7.5		5374 5365 5462		100.0	61.5 61.4 62.5	13.0 13.0 13.2	- 76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0				0.0	0.0				00		0:0	0.0	0.0		00		0.0	0.0	0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.	n. Total (Template Table 4a)		702	٦				1520	0	100.0				3096		100.0	33.3	7.5		5374		100.0	61.5	13.0	62 - 92
Final consumption	Electricity	reference scenario ^f additional energy efficiency ^f		7912 7912		10	0.00.		8670	0		100.0	20.7		9428 8829			100.0	21.5		9985			100.0	23.1	64
	Heating and cooling	reference scenario/ additional energy efficiency/		21804		_ <u>\$</u>	100.0 57.1		21804	4 4		100.0	53.8		21804			100.0	53.1		21804			100.0	52.8	99
	Transport	reference scenario f additional energy efficiency f		8493 8493		101	100.0 22.2		9485 9304	4		100.0	23.0		9661 9306			100.0	22.7		9333 8740			100.0	21.2	89
	Total before aviation reduction	reference scenario f additional energy efficiency f		38209 38209			100.0		41012 40517	2 7			100.0		42057 41076				100.0		42386 41301				0.001	70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a.			0.0		n.a.				0.0		n.a. n.a.				0.0		n.a. n.a.				0.0	72
Target		Transport fuels target Overall renewable target ⁹					2.2						4.4						7.1						10.0	53
E	- Control of the control of the control		- de -	Id. I.	200 0 00	0/11	T OUR	doid out	1																	

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2009 and 2015 the shares as defined in Amer (12 its meant to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActvirian and 2015 the shares are prepared to the Template prepared by the European Commission and available for download at http://cert.educ.

Bulgaria 28 NOV 2011

Bulgaria

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 211 provides a background to the above figures.

28 NOV 2011 Bulgaria

			[GWh]	ktoe	2005	1 olso	2]2	- I	GWh]	toel [%]	0	31,015	.]. [26]	[GWh]	1-1 [kto	e [%]	5		1%]	d [GWh	h] [ktoe	[%]	1	[%]	p[%]	Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower > 10 MW Hydropower > 10 MW	n.a. n.a.		0.0																l					103
		Geothernal	0		0.0																					011
		Solar photovoltaic Concentrated solar power Solar (captures)	000	000	0.0									1						l						121
		Tidal, wave and ocean energy	0	0	0.0									ı												128
		Onshore wind Offshore wind Wind power (subtotal)	\$ 0 \$	000	0.0					1	1			1		1							1			139
		Solid biomass Biogas Bioliquids Biomass (suboral)	0000	0000	0:00				0000					313						214 3 351 0 0 7 865						24 24 24 24
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	3073 3073	264 264 264	100.0 100.0 99.9									1						1						- 76 – 79
	Heating and cooling	Geothermal		n.a.	0.0			0.						_						0						154
		Solar thermal		n.a.	0.0			0:		1						1					2		1			160
		Solid biomass Biogas Bioliquids Biomass (subtotal)		427 0 0 724	0.00			 <u> </u>		l					6 8	l				19-08	105		l			891 891 891
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps		n.a. n.a.	0.0			 <u> </u>							1 = = =					1000	111					174 174
		Kenewable energy from near pumps (subrota) Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		724	0.00 100.0 100.0			5 0 0 0 		1					1883	1				21000	0111					6/1
	Transport	Bioethanol / bio-ETBE		0	0.0			0						١						2	9					081
		Biodiesel		0	0.0			0:							1					31	22					186
		Hydrogen from renewables		0	0.0			0:		1						1				10			1			190
		Renewable electricity		3	100.0						1						1									198
		Other biofuels		0	0.0			0:									1			10						204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)°		www0	100.0 100.0 100.0 0.0	0.0 0.0 0.0 0.0	0.00	0.000		38 88 8 80 10 10 8	100.0 100.0 100.0 83.3	3.4.4 2.9.4.4	13 03 13 03 13 03 11 03	Im m == ::		166 100.0 166 100.0 166 100.0 115 69.3	0 12.6 0 12.6 0 12.6 3 8.8	6 5.7 6 5.7 8 5.7 8 4.0	7 1.6 7 1.6 1.6 1.1 0	1999-	302 302 302 204	12 100.0 12 100.0 14 67.5	0 17.6 0 17.6 0 17.6 0 17.6 5 11.9	10.2	228 288 1.988	76 – 79
	All RES excl. co-operation mech.	 Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12 		991 988 991	_			ووو		104	0101			10.0.5	5 2 3	828	129.			000	205	646	119.			76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0		0.0		0 19		5.8) ×	0 98	0.0			0.9	34	0 =	0.0			76 – 79 76 – 79
	All RES incl. co-operation mech.			166	-			9.		046	10,				13	13	100			4	171	·	100.			26 – 79
Final	_	reference scenario ^f additional energy efficiency ^f		3129		1	100.0 30.3	6.		3130		_			33.	55		100.0		6	359	r_ ∞		-		64 65
	Heating and cooling	reference scenario/ additional energy efficiency/		4543 4543		=	100.0 44.0	0:	1 4	1851 1492		<u>ĕ</u>	100.0 43.2		56	0 1 05		100.0) 42.8		619	€ ∞		100.0	43.2	99
	Transport	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		2642 2642)1	100.0 25.6	9:	(4	2830		ğ	100.0 26.3		31.	16 8t		100.0	0 27.3	3	347	5.3		100.0	27.5	69 89
	Total before aviation reduction	reference scenario $^\prime$ additional energy efficiency $^\prime$		10314			100.0	0:	33	1398			100.0	_	121.	98			100.0	0	13263 10738	£ 8			100.0	70 71
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a.			O	0.0		n.a. n.a.			0:0	_	- d	i ii			0.0	0	2 2	ei ei			0.0	
Target		Transport fuels target Overall renewable target ⁹					9.6	4					10.7	_					12.4	4					10.0	
E				100	100	0,1.	8 000		1 1.10 Lane																	

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2009 and 2015 the shares as defined in Amer (12 its meant to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActvirian and 2015 the shares are prepared to the Template prepared by the European Commission and available for download at http://cert.educ.

ECN-E--10-069 211

Czech Republic 28 NOV 2011

Czech Republic

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 213 provides a background to the above figures.

28 NOV 2011 Czech Republic

			[GWh]	Iktoel	2005	51 q1%1	p[%] ol%i	d [GWh]	Vhl Ikto	2010 Del [%] ^a	010 a [%] ^b	ار%ار ا	p[%]	[GWb]	rktoel	2015	J 91%J	61 2[%]	pl%.	[GWh]	[ktoe]	2020	J 91%	61 21%	p1%.	Page
Renewable production	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower IOMW Hydropower IOMW Hydropower (sultorial)	n.a. n.a. 7380		0.0	1	1						1	n.a. n.a. 2220	1			1			1	0.0		1	0.009	103
		Geothermal	0		0.0									18	2				0:0						 <u> </u>	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	n.a. 0	n.a. 0	0.0									1708 n.a. 1708	147 n.a. 147				0.0						12.62	121 121 121
		Tidal, wave and ocean energy	n.a.	n.a.	0.0									n.a.	n.a.				0.0						12	128
		Onshore wind Offshore wind Wind power (subtotal)	21 n.a. 21	n.a.	0.0 0.0 0.7					1				975 n.a. 975	84 n.a. 84				0.00		I				484 	139 139 139
		Solid biomass Biogas Bioliquids Biolimass (subtotal)	560 161 721	84 ± 0 6	17.9 5.2 0.0 23.1	2.7 0.0 3.5	0.8 0.2 0.0 0.0 1.0 0.2		1306 1 624 0 1930 1	112 25.7 54 12.3 0 0.0 166 38.1	3 2.1 0 0.0 1 6.6	1.9 0.0 2.7	0.0 0.0 0.0	3065 1754 0 4819	264 151 0 414	31.5 18.0 0.0 49.5	7.2 4.1 0.0 11.3	3.9 0.0 6.2	0.00 0.5 1.3	3294 2871 0 6165	283 247 0 530	28.2 24.6 0.0 52.8	6.5 5.6 0.0 12.1	3.9 0.0 7.3	 00 00 00 00 00 00 00 	149 149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	3122	268 268 269	100.0 100.0 100.2									9741 9740	838 837 864				2.7						1	79
	Heating and cooling	Geothermal		0	0.0			0		1 1					15				0.0		1 1				'	154
		Solar thermal		2	0.1										15				0:0							160
		Solid biomass Biogas Bioliquids Bioliquids Biomass (subtotal)		1351 23 0 1374	96.2 1.6 0.0 97.8			19-105	12 71						2137 110 0 2247				00 00 1		l				1	168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps		n.a. n.a. 29	0.0 0.0 1.2			1000-							n.a. n.a. 82				0.000						l	174 174 177
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)			100.0 100.0 105.5				20 80 80						2344 2359 2359				7.5 - 7.6 7.6		1				1	- 62 – 92
	Transport	Bioethanol / bio-ETBE		0	0.0			0							91				0.3							180
		Biodiesel		3	33.3			10		1					347				 =							186
		Hydrogen from renewables		0	0.0			0		1					0				0.0		1				1	190
		Renewable electricity		9	66.7			16							16				0.1			1			'	861
		Other biofuels		0	0.0			0		1					0				0.0		1				12.	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)°		0000	100.0 100.0 100.0 100.0			10000	4666						455 455 455 455										1	
	All RES excl. co-operation mech.	 Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12 		1760 1676 1682				7	222	988	100.0 99.4				3677 3621 3650	_			11.8		4383 4333 4367	-				79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0:0	0.0	0.0		00	0.0	0.0	0:0		00		0.0	0.0	0:0		00		0.0			76 – 79 76 – 79
	All RES incl. co-operation mech.	n. Total (Template Table 4a)		1760				6	25	90	100.0				3677	[11.8		4383	-				62 - 92
Final consumption	Electricity	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		6014		10	100.0 20.3	3	61	51 36		100.0	20.1		6903		=	100.0	21.5		7563 7232		1(2 0000	22.2	64 65
	Heating and cooling	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		17644 17644		10	100.0 59.5	2	183	.26 05		100.0	59.4		18856 17963		-	100.0	57.8		9992		1(100.0	57.4	99
	Transport	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		6007		91	100.0 20.2	2	61	6146 6128		100.0	20.4		6506 6429		-	100.0	20.7		6573		1(100.0	20.3	89
	Total before aviation reduction	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		29665 29665			100.0	0	30623	69			100.0		32265			10	0.001	.e.e.	4128 2531			10	0.001	70
	Total after aviation reduction	reference scenario ^f additional energy efficiency ^f		n.a. n.a.			0:0	0		n.a. n.a.			0.0		n.a. n.a.				0.0		n.a. n.a.				0.0	72
Target		Transport fuels target Overall renewable target ⁹					6.1	_					7.5						9.2						10.0	53
					0.00		0000																			

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2009 and 2015 the shares as defined in Amer (12 its meant to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActvirian and 2015 the shares are prepared to the Template prepared by the European Commission and available for download at http://cert.educ.

ECN-E--10-069 213

Denmark 28 NOV 2011

Denmark

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 215 provides a background to the above figures.

Denmark 28 NOV 2011

			[GWh]	Iktoel	2005	كام الك	lc [68]q	[GWh]	Iktoel	2010	0 [%]] [%]	p[%]	[GWh]	[ktoe]	2015	q1%]	2000	p1%	[GWh]	[ktoe]	2020	18°1	2[%]	p1%.	Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower IMW - 10 MW Hydropower 2 (00)MW	n.a. n.a. 33	n.a. n.a.			1				1	0.00	0000	n.a. n.a. 31	n.a. n.a.	0.000	0.00	1	0.000	n n n n n n n n n n n n n n n n n n n	n.a. n.a.	0.00	0.00	0.00	0.00	103
		Geothermal	0	0				I			0.0	0.0	0:0	0	0	0.0	0.0		0:0	0	0	0.0	0:0	0.0	0.0	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	000	000				I			0.0	0.0	0.00	000	000	0.00	0.00		' 888	404	000	0.0	0.00	0.00	0.0	121 121 121
		Tidal, wave and ocean energy	0	0				ı			0.0	0.0	0.0	0	0	0.0	0.0		0:0	0	0	0.0	0:0	0.0	0.0	128
		Onshore wind Offshore wind Wind power (subtotal)	5158 1456 6614	444 125 569				ı			14.7 6.0 20.7	16.9 6.9 23.8	3.2 1.3 4.5	6322 4920 11242	54 423 967	36.5 28.4 64.9	14.5 11.3 25.8		23.3	6391 5322 11713	550 458 1007	31.0 25.8 56.9	9.3 20.4	16.9 14.1 31.0	3.3 6.1	139 139 139
		Solid biomass Biogas Bioginids	283	255 24 0				l			8.6 0.5	9.9	0.0	5312	457 62 0	30.7	12.2		2.8	6345 2493 8	214 214	30.8	1.14.0	16.8 6.6 0.0	3.3	149 149 149
		Biomass (subtotal)	3243					ı			9.1	10.4	2.0	6035	519	34.9	13.9		3.1	8846	761	43.0	15.4	23.4	4.6	149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	9881 9882	850 1 850 1 850 1							29.8 29.8 29.8	34.3 34.3 34.3	6.5 6.5 6.5	17312 17311	1489 1488 1477	100.0 100.0 99.2	39.7 39.7 39.4		0.6 9.0 8.9	20595 20594	1771 1771 1685	100.0 100.0 95.2	35.9 35.9 34.2	54.5 54.5 51.9	10.8	- 62-92
	Heating and cooling	Geothermal		0					0		0.0	0.0	0.0		0	0.0	0.0		0.0		0	0.0	0.0	0.0	0.0	154
		Solar thermal		10					11		0.3	0.1	0.1		41	0.5	4.0		0.1		16	0.5	0.3	0.2	0.1	160
		Solid biomass Biogas Biogasis Biodikijuds Biomass (subtotal)		1714 45 0 1759	91.7 6. 2.4 0.0 94.1 6				2178 59 8 8 2245		60.9 1.6 0.2 62.7	27.1 0.7 0.1 27.9	13.3 0.4 0.0 13.8		2426 92 8 8 2526	85.4 3.2 0.3 88.9	64.8 2.5 0.2 67.4		, 0.0 15.2 15.2		2470 165 8 2643	81.6 5.4 0.3 87.3	50.1 3.3 0.2 53.7	32.3 2.2 0.1 34.5	15.0 1.0 16.1	168 168 168
		Aerothermal heat pumps							16		2.5	1.1	9'0		135	8.4	3.6		8.0		170	5.6	3.5	2.2	1.0	174
		Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		22000					210		3.3 0.0 5.9	1.5 0.0 2.6	0.0		301	5.8 0.0 10.6	8.0 8.0 8.0		0.0		370	6.6 0.0 12.2	0.0 7.5	2.6 0.0 4.8	273	174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		1869 1869 1869 1					2466 2466 2480		68.9 68.9 69.3	30.7 30.7 30.8	15.1 15.1 15.2		2841 2841 2855	100.0 100.0 100.5	75.8 75.8 76.2		171 172 172		3028 3029 3042	100.0 100.0 100.5	61.5 61.5 61.8	39.6 39.6 39.7	18.4 18.5 18.5	- 26 – 27
	Transport	Bioethanol / bio-ETBE		0					13		0.4	0.3	0.1		95	35.7	2.5		9.0		94	32.3	1.9	2.2	9.0	180
		Biodiesel		0					18		0.5	0.4	0.1		152	57.1	4.1		6.0		167	57.4	3.4	3.9	1.0	186
		Hydrogen from renewables		0					0		0.0	0.0	0.0		0	0.0	0.0		0.0		0	0.0	0.0	0.0	0.0	190
		Renewable electricity		9 1	1				=	1	0.3	0.3	0.1		19	7.1	0.5		0.1		59	10.0	9:0	0.7	0.2	198
		Other biofuels		0					0		0.0	0.0	0.0		0	0.0	0.0		0.0		0	0.0	0.0	0.0	0.0	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)*		9 6 6 9		03 02 03 02 03 02 03 02	2222 010 010 010		4444	100.0 100.0 100.0 100.0	2222	0.000	03 03 03 03		266 266 266 292	100.0 100.0 100.0 109.8	7.1 7.1 7.1 7.8	6.1 6.1 6.7	9:1 9:1 9:8:1 8:1		291 290 291 439	100.0 99.7 100.0 150.9	5.9 5.9 8.9	6.7 6.7 6.7 10.1	1.8 1.8 2.7	- - - - - - - - - - - - - - - - - - -
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		2718 2719 2728	01 01				3578 3564 3575		100.0	85.4 85.0 85.3	21.9 21.8 21.9		4579 4577 4595		122.2		27.6 27.6 27.7		4989 5061 5090		101.3	115.2 116.8 117.5	30.4 30.8 31.0	76
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0			00		0.0	0.0	0.0		833		0.0		0.0 5.0		63		0.0	0.0	0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.	Total (Template Table 4a)		2718	10				3578		100.0	85.4	21.9		3746		100.0		22.6		4926		100.0	113.7	30.0	62-92
Final consumption	Electricity n	reference scenario f additional energy efficiency f		3166 3166		100.0	.0 19.2		3144			100.0	19.0		3418 3234			0.001	5.61		3564 3247			100.0	19.8	64 65
	Heating and cooling	reference scenario/ additional energy efficiency/		8071 8071		100.0	.0 49.0		8161			100.0	49.3		8512 7929			0.001	47.8		8727 7653			100.0	46.6	99
	Transport	reference scenario/ additional energy efficiency ^f		4145		100.0	.0 25.2		4207			100.0	25.7		4428 4353			100.0	26.2		4464 4332			100.0	26.4	89
	Total before aviation reduction	reference scenario/ additional energy efficiency ^f		16475 16475			100.0		16495				100.0		17453 16596			-	0.00		17984 16419				0.00	70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a.			0:0		n.a.				0.0		n.a. n.a.				0:0		n.a. 16346				9.66	72
Target		Transport fuels target Overall renewable target 9					17.0						19.6						22.9						10.0 30.0	53

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2009 and 2015 the shares as defined in Amer (12 its meant to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActvirian and 2015 the shares are prepared to the Template prepared by the European Commission and available for download at http://cert.educ.

Germany 28 NOV 2011

Germany

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 217 provides a background to the above figures.

(1	erm	าลทง	

28	NOV	201	1

			PAMSI	Leton	2005	91701	סבוכ נסבוק		CWA-1	100	2010	10 10210	1c rez.1d	[CWP]		7	2015	102.1	c rezid	p CAMP.	1	2020	120 1 rez.16	102.10	L02.1 d	Page
1		TT. A.		[acual		[2]	1				- 1	1	1			- 1		1	1				- 1			103
production	Electrony	Hydropower 1MW - 10 MW	n.a. n.a.	n a	0.0																				0.0	103
		Hydropower >10MW Hydropower (subtotal)	n.a. 19687	n.a. 1693	31.9																				0.0	103
		Geothermal	0	0	0.0			ı												1					0.1	110
		Solar photovoltaic Concentrated solar power	1282	000	2.1			ı								ı				1					0.0	121
		Solar (subtotal)	787	or l	1.7			1														- 1			×: 5	121
		Indai, wave and ocean energy	0		0.0			-								- 1									0.0	120
		Onshore wind Offshore wind Wind power (subtotal)	26658 0 26658	2292 0 2292	43.2 43.2 43.2				44397 3 271 44668 3					61990 8004 69994						3 72664 3 31771 8 104435					3.2 4.4 5.4	130 130 130
		Solid biomass Biogas	3652	314	16.3			ı												1		l			1.2	149
		Bioliquids Biomass (subtotal)	329 14025	1208	0.5 22.7																				0.1	149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	61653 61652	5301 5301 5301	100.0 100.0 100.0															1					9.5 9.5 9.5	- 20
	Heating and cooling	Geothernal		12	0.2			0												-	39				0.3	154
		Solar thermal		238	3.1															31	12	1			9.0	091
		Solid biomass Biogas Biogas		4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88.2			10	7						so == 1	l .				10.00	968				0.9 0.9	891
		Biomass (subtotal)		7261	94.2			5	6						10					0.0	113				5.8	188
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat nums (subicial)		88228	0.5 1.7 0.4 2.5	0.3 0.9 0.2 1.3		10-0-												12204	2000				0.0	174 174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		7706	100.0 100.0 100.0			1444	222						222					15.55	3 4 4				73	
	Transport	Bioethanol / bio-ETBE		1	6.9															5	36				0.4	180
	•	Biodiesel		1598	9.92			7	2						2	1				10	44				2.3	186
		Hydrogen from renewables		0	0.0			10												10					0.0	061
		Renewable electricity		169	8.1					1										2)9		1		0.3	861
		Other biofuels		177	8.5											1				10	ď	1			0.0	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)*		2087 2088 2087 2087	100.0 100.0 100.0 100.0	14.0 14.0 14.0 14.0	3.9 3.9 3.9 0 3.9 0 0	60 60 60 60 60	mmmm	3749 10 3750 100 3749 100 3847 100	100.0 16.6 100.0 16.6 100.0 16.6 102.6 17.0		7.2 1.7 7.2 1.7 7.1 2.7 7.1 2.7 7.1 1.7		M M M M	3479 100.0 3479 100.0 3479 100.0 3613 103.9	60 12.1 00 12.1 00 12.1 00 12.1	1.1 6.8 1.1 6.8 5 7.0	8 1.6 8 1.6 1.6 1.7	19991	5967 6140 6390	57 0.0 40 0.0 90 0.0	0.0 15.5 0.15.9 0.15.9	0.0 12.4 13.2	3.0 3.1 3.1	
	All RES excl. co-operation mech.			14926 14925 15096			27.8 6 27.8 6 28.2 6	655	222	22588 22587 22807	000				288	822 821 96	000			881	385 324 390	57 17 50	84.1		19.6 16.4 19.8	- 76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0:0		00		00	0.0					00	0:0					00	0.0		0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.	Total (Template Table 4a)		14926				5	22	588	100				28	322	9			5	382	57	100.0	ľ	19.6	26 – 79
Final consumption	Electricity on	reference scenario ^f additional energy efficiency ^f		51813		=	100.0 22.6	9	51	51973 51925		100.0	.0 23.2		52	554		100.0	0 23.7	7	52627 48317	72 71		100.0	24.5	28
	Heating and cooling	reference scenario/ additional energy efficiency ^f		116842		=	100.0 51.0	0	ĒĒ	111661		100.0	.0 49.9		106215	215 888		100.0	0 48.	9	98766	93 26		100.0	47.2	99
	Transport	reference scenario ^f additional energy efficiency ^f		53602		=	100.0 23.4	4	52	52427 52355		100.0	.0 23.4		52187 51279	87		100.0	0 24.	_	51996 48302	22		100.0	24.5	88
	Total before aviation reduction	reference scenario ^f additional energy efficiency ^f		229092			100.0	0	223767	767			100.0	_	218926	22			100.0	•	211599	66			100.0	02
	Total after aviation reduction	reference scenariof		n.a.						n.a.						n.a.					= :	n.a.			6	22
Target		adunona energy eniciency. Transport fuels target Overall renowable rarcets		IF G				0.00		II di			20 8			rg:			=			ą.			10.0	3, 2
		Overall remember on gove											;							,					1001	ì

Overall renewable larget?

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the sector-total (RES-E, RES-H/C or RES-T, see values highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in total RES (if applicable including co-operation mechanisms, see value highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the sector total of the final gross energy consumption (*Additional energy efficiency scenario*) only), see values highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the oad final gross energy consumption (*Additional energy efficiency scenario*), see value highlighted in bold).

Art 2.1 adjustment refor to double counting of certain biolads (times 2.2) and and renewable electricity in road transport (times 2.5).

Art 2.1 adjustment reads for the years 2005 rafet to the "hange (see Table 47 times 2.6) (sage 54) to Table 56 (sage 54).

Art 2.2 adjustment reads for the years 2005 rafet to the "hange (a principle of the years 2.005 and 2015.2016.

Art 2.2 adjustment where is referred to Tables 1, 4a, 1,0ab, 1.1 and 12 it is meant to the Template, prepared by the European Commission and available for download at http://eur.ex.europa.eu/LexUriServ.do/buri=CELEX.32009D0548.EN:NOT

Estonia 28 NOV 2011

Estonia

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 219 provides a background to the above figures.

Estonia 28 NOV 2011

			[GWb]	[ktoe]	~ _	61 ql%.	pl%] ol%.	[GWh]	rktoe	2010	61 91%	%اد [%ا _م	d [GWh]	h] [ktoe]		10	2[%]	p[%]	[GWh]	[ktoe]	2020	20 [%] ^b	[%]	p[%]	Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower > I0MW	n.a. n.a.	, n.					1									0.00	n.a. n.a.	, n n n n	1		0.00	0.00	103
		Geothermal	D.a.	7 "E"														0.0	n.a.	. E.u			0.0	0.0	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	n.a. 0		1													0.00	n.a. 0	n.a. 0	1		0.00	0.0	121
		Tidal, wave and ocean energy	n.a.	n.a.					1							1		0.0	n.a.	n.a.			0.0	0.0	128
		Onshore wind Offshore wind Wind power (subtotal)	54 n.a. 54	5 n.a. 5	1													2.5 0.0 2.5	974 563 1537	84 132	1		8.9 5.2 14.1	2.4 1.4 3.8	139 139 139
		Solid biomass Biogas Bioliquids Biomass (subotal)	n.a. n.a. 33	n.a. n.a. 3				0.000 m.a. 1.000 m.a.					0 0 0 0 0 0 0 0 0 0 346					0.000	n.a. n.a. 346	n.a. n.a. 30			0.0 0.0 3.2	0.00	149 149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	n.a. 107	n.a. 9									-					3.5 3.5 3.5	n.a. 1913	n.a. 164 165			0.0 17.5 17.6	0.0	- 62 – 92
	Heating and cooling	Geothermal		n.a.				()	n				0.0		n.a.			0.0	0.0	154
		Solar thermal		n.a.					l					n.		l		0.0		n.a.			0.0	0.0	160
		Solid biomass Biogas Bioliquids Biolimass (subotal)		505 n.a. 505	0.00	98.1 0.0 0.0 98.1 3	31.3 16.3 0.0 0.0 0.0 0.0 31.3 16.3	lm c c z	612 10 n.a. n.a. 612 10	0.00 0.	91.9 0.0 0.0 91.9 31	38.9 19.2 0.0 0.0 0.0 0.0 38.9 19.2	18000	626 n.a. n.a. 626	6 100.0 6 0.0 6 100.0	88.9 0.0 88.9	39.7 0.0 39.7	18.8 0.0 18.8 18.8		607 n.a. 607	100.0 0.0 0.0 0.0	70.3 0.0 70.3	38.4 0.0 38.4 38.4	17.6 0.0 0.0 17.6	168 168 168
		Aerothermal heat pumps Geothermal heat pumps		n.a.										1 2 2				0.0		n.a.			0.0	0.0	174
		Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)						00					0.0	ä				0.0		n.a. 0			0.0	0.0	174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		505 505 505				Im m =					1222	222				18.8 18.8 18.8		607 607 607			38.4 38.4 38.4	17.6 17.6 17.6	- 62 – 92
	Transport	Bioethanol / bio-ETBE		0										_				4.0		38			4.1	1.1	180
		Biodiesel		0)	2				9.0		51			5.5	1.5	186
		Hydrogen from renewables		0										n.				0.0		n.a.			0.0	0.0	190
		Renewable electricity		0														0.0		1			0.1	0.0	198
		Other biofuels		0									0					0.0		0			0.0	0.0	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)*		0 0 0 n.a.				10000					10000	0.62 tu				131111		90 90 92 n.a.			9.6 9.9 9.9	2.6 2.7 0.0	- - - - - - - - - - - - - - - - - - -
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		515 505 514				25.00	666 613 665	9			62~	87 86 77	s-s	93.9		23.6 19.9 23.4		863 696 861		100.0	92.4 74.5 92.2	25.0 20.2 25.0	76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		0 n.a.		0.0			0 n.a.		0.0		0.0	_ ∞	0	0.0		0.0		00		0.0	0.0	0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.	. Total (Template Table 4a)		515	Ť			5	999	10				76	4	100.0		21.1		863		100.0	92.4	25.0	62 - 92
Final consumption	Electricity n	reference scenario f additional energy efficiency f		738 738		10	100.0 23.8		829 829		10	100.0 26.0		58	9 +		100.0	26.6		951 938			100.0	27.2	64 65
	Heating and cooling	reference scenario f additional energy efficiency f		1615		10	100.0 52.1	,	1592 1572		10	100.0 49.3		163	7		100.0	47.4		1698 1579			100.0	8.28	999
	Transport	reference scenario f additional energy efficiency f		746 746		10	100.0 24.1		789		10	100.0 24.7	7	88	9 %		100.0	26.1		954 934			100.0	27.1	89
	Total before aviation reduction	reference scenario f additional energy efficiency f		3098			100.0		3210 3190			100.0	(341	6			100.0		3602 3451				100.0	70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a. n.a.			0.0		n.a. n.a.			0.0)	n.a. n.a.	ن نے			0.0		n.a. n.a.				0.0	72
Target		Transport fuels target Overall renewable target g					18.0					19,4	-					21.2						10.0	54
				140	100	0111	E 00.																		

The percentages refer to the values in the column 'Iktoe' and express the share of the remeable technology in the sector-total (RES-4LC or RES-T. see values highlighted in bold).
 The percentages refer to the values in the column 'Iktoe' and express the share of the remeable technology in total RES (fail pickube the remeable technology in the sector total of the final gross energy consumption (*Additional energy efficiency securatio), only), see values highlighted in bold).
 The percentages refer to the values in the column 'Iktoe' and express the share of the remeable technology in the scort rotal of the final gross energy consumption (*Additional energy efficiency securatio), see values highlighted in bold).
 A.T. 2) agreement energy effection of the Additional energy efficiency securatio), see value highlighted in bold).
 A.T. 2) adjustment energy efficiency securation (*Additional energy efficiency securatio), see value highlighted in bold).
 A.T. 2) adjustment energy efficiency securation (*Additional energy efficiency securation), see value highlighted in bold).
 A.T. 2) adjustment energy efficiency securation (*Additional energy efficiency securation), see value highlighted in bold).
 A.T. 2) adjustment energy efficiency securation (*Additional energy efficiency securation), see value highlighted in bold).
 A.T. 2) adjustment energy efficiency securation (*Additional energy efficiency securation), see value highlighted in bold).
 A.T. 2) adjustment energy efficiency securation (*Additional energy efficiency securation), see value highlighted in bold).
 A.T. 2) adjustment energy efficiency securation (*Additional energy efficiency securation), see value highlighted in bold).
 A.D. 2) adjustment energy efficiency securation (*Additional energy efficiency securation (*Additional energy efficiency securation (*Additional energy efficiency securation (*Additional ene

Ireland 28 NOV 2011

Ireland

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 221 provides a background to the above figures.

Ireland 28 NOV 2011

			[GWh]	[ktoe]		6] 68	6]° [%] ^d	[GWh]	[ktoe]	2010	10 [%] ^b	[%]	_p [%]	[GWh]	[ktoe]	2015 [%] ^a	5 [%] ^b	[%]	p[%]	[GWh]	[ktoe]	2020	9[%] 0	[%] _c	p[%]	Page
Renewable	Electricity	Hydropower < 1MW Hydropower IMW - 10 MW Hydropower SI MW - 10 MW	n.a.	n n n				n.a.			0.00		0.00	n.a.	n n n	0:0:0		0.00	0000	n.a.	n n n		0.0	0.0	0.0.0	103
		Hydropower (subtotal)	092	.				١		- 1			0.5	714	19	7.2	4.4	2.3	0.5	701	99		2.7	2.1	0.4	103
		Geothernal	0	_				ı		- 1			0:0	0	0	0.0	0:0	0.0	0:0	0	0	- 1	0.0	0.0	0:0	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	n.a. 0.a.	n.a. 0.									000	000	000	0.0.0	0.00	0.00	000	000	000		0.00	0.00	0.0.0	121
		Tidal, wave and ocean energy	0	0									0.0	0	0	0.0	0.0	0.0	0.0	230	20	1	6.0	0.7	0.1	128
		Onshore wind Offshore wind Wind power (subtotal)	n.a. n.a. 1588	n.a. n.a. 137				4701 116 4817					3.1 0.1 3.2	7525 814 8339	647 70 717	75.7 8.2 83.9	46.4 5.0 51.4	24.5 2.7 27.2	6.5 5.3	10228 1742 11970	879 150 1029	1	38.8 6.6 45.4	31.3 5.3 36.6	6.2 1.1 7.3	139 139 139
		Solid biomass Biogas Biologuids	8 01 0 0	1 6 0				l		1			0.0	567 320 0	28 0	5.7 3.2 0.0	3.5 2.0 0.0	1.8	0.0	687 319 0	27 0		2.6 1.2 0.0	2.1 0.0 0.0	0.0	149 149 149
		Biomass (subtotal)	116					ı					0.2	887	9/	8.9	5.5	2.9	9.0	1006	82		3.8	3.1	9.0	149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	2465 2464	212 212 180									8 8 8 8 8 8 8 8 8	9939 9940	855 855 855	100. 0 100.0 100.0	613 613 613	32.4 32.4 32.4	63 63	13909	1196 1196 1196		52.7 52.7 52.7	425 425 825	2.8.8 5.5.5	
	Heating and cooling	Geothermal		0					٥	l			0.0		0	0.0	0.0	0.0	0.0		0		0.0	0.0	0.0	154
		Solar thermal		0					4	1			0.0		12	2.7	6.0	0.2	0.1		20	1	6.0	0.4	0.1	160
		Solid biomass Biogas Bioligidiodio Biomass (sulvotal)		176 7 0 183					18 2 ° 8				0.0		362 380 380 380 380 380	80.3 0.0 86.0	26.0 1.9 0.0 27.8	0.5 0.0 7.7	0.0		£80 84 85 85 85		20.0 1.5 0.0 21.4	9.2 0.0 9.9	3.2	891 891 891
		Aerothermal heat numps											00		8 6	0.0	00	0.0	00		2 5		00	00	5 0	174
		Geotherman heat pumps Geotherman heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		n.a. 10.a.					n.a. 18.a.				0.00		n.a. n.a. 51	0.00	3.7	0.00	0.00		n.a. 84.a.		0.0 0.0 3.7	0.0	0.00	47.1 47.1 47.1
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		193 193 193					222				7.1 7.1		451 451 451	100.0 100.0 100.0	32.4 32.4 32.4	6.8 6.8 6.9	888		591 590 591		26.0 26.0 26.0	12.0 12.0 12.0	244	
	Transport	Bioethanol / bio-ETBE		0					9				0.3		90	30.0	6.5	1.7	0.7		139		6.1	2.4	1.0	180
		Biodiesel		-					8	1			0.7		209	69.7	15.0	4.1	1.5		342	1	15.1	0.9	2.4	186
		Hydrogen from renewables		n.a.					9	1			0.0		0	0.0	0.0	0.0	0.0		0	1	0.0	0.0	0.0	190
		Renewable electricity		-									0.0		-	0.3	0.1	0.0	0:0		37		1.6	9.0	0.3	198
		Other biofuels		-									0.0		-	0.3	0.1	0.0	0.0		-	1	0.0	0.0	0.0	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) Gross final RES-T consumption (Template Table 4b) RES-T including Article 21.2 (Template Table 4b)°		-6	100.0 250.0 100.0 100.0	0.3	0.0 0.1 0.0 0.0 0.0		135 135 135 138	100.0 100.7 100.0 102.2	15.7 15.8 15.7 16.1	3.0 3.0 3.0 3.0	0.1.1.1		300.00	100.0 100.3 101.3	21.5 21.5 21.5 21.8	8.8.8.0 9.8.8.0	5555		482 519 482 575	100.0 107.7 100.0 119.3	21.2 22.9 21.2 25.3	8.4 9.0 10.0	4.8.8.4 4.1.4	
	All RES excl. co-operation mech.			373 405 407					858 858 860	0 ~ -	100.0		6.6 6.6 6.6		1605 1605 1607		115.1	31.2 31.1 31.2	11.8		2269 2232 2305		100.0 98.4	39.5 38.8 40.1	16.0 15.8 16.3	76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0					0.0	0.0	0.0		211		0.0	0.0	0.0		00		0.0	0.0	0.0	76 – 79
	All RES incl. co-operation mech.	i. Total (Template Table 4a)		373	-				856		100.0	18.8	9.9		1394		100.0	27.1	10.3		5269		100.0	39.5	16.0	62-92
Final consumption	Electricity	reference scenario/ additional energy efficiency/		2341		10	100.0		2511			100.0	19.0		2764 2636			100.0	19.4		2937			100.0	19.9	64
	Heating and cooling	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		5516 5516		2	100.0 43.1		518,	 -		100.0	39.6		5388			100.0	37.3		5724 4931			100.0	34.9	99
	Transport	reference scenario/ additional energy efficiency/		3912 3912		10	100.0 30.5		4605 4564	IC :		100.0	35.0		5311 5152			100.0	38.0		5913 5747			100.0	40.6	89
	Total before aviation reduction	reference scenario/ additional energy efficiency ^f		12807 12807			100.0		13127	1			100.0		14181 13575				100.0		15367				100.0	70
	Total after aviation reduction	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		12741 12741			5.99.5		13100	,c :-			8.66		n.a. n.a.				0.0		n.a. n.a.				0.0	72
Target		Transport fuels target Overall renewable target ⁹					3.1						5.7						6.8						10.0	54
a The nerc	ulocating and so the solution	of The assessment of the solves is the column flates? The street of the second by the second second is the content to the	in the contor	TO) lotos) D D D	II/C or J	T SER	Idoid acritor	inlated in	hold																

^a The percentages refer to the values in the column Tkool" and express the share of the renewable technology in the sector-total (RES-F. RES-HVC or RES-T. see values highlighted in bold).
^b The percentages refer to the values in the column Tkool and express the share of the renewable technology in total RES (rippicable in the column column street) and express the share of the renewable technology in the Use and respect to the values in the column Tkool and express the share of the renewable technology in the use and that goes energy consumption (Additional conergy efficiency securatio) only), see values highlighted in bold).
^a The percentages refer to the values in the column Tkool and express the share of the renewable technology in the use and in goes energy consumption (before aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
^a The percentages refer to the values in the column Tkool and express the share of the renewable electricity in road ransport (times 2.2s).
^b The The share and 2005 and 2005 refer to the 'base, sour' in Emplaie Table 17 (sage 64) or Table 56 (page 73).
^c For the years 2005 and 2001 the share, sa defined in Annex 1 O'Directive 2009/SKEC are presented, for the years 2016 and 2016 it is referred to the relational and 2011 to the year 2016 and 2011 the share, say as defined in Annex 1 O'Directive Transparent of the the years 2016 and 2011 the share, say as defined in Annex 1 or the years 2005 and 2011 in the year 2016 and 2011 the percentage of the per

Greece 28 NOV 2011

Greece

Renewable electricity
 Other biofuels

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 223 provides a background to the above figures.

28 NOV 2011 Greece

Exercise Explanation (1987) Explanation (1987				[GWh]	[ktoe]	50		_	[GWh]	_		[%] ان	[%]	p[%]	[GWh]		5	_	_	_			2	_]q	Page
Control of Control o	Renewable production	Electricity	Hydropower < IMW Hydropower IMW - 10 MW	n.a. n.a.		0.0				١		0.0	0.0	0.0	n.a.	l	1						0.0			0.0	22
Continue of the continue of			Hydropower >10MW Hydropower (subtotal)	n.a. 0	_							0.0	0.0	0.0	n.a. 0	n.a. 0										0.0	==
Mathematic and the particular property of the			Geothermal	n.a.								0.0	0.0	0.0	123	=										E	-
House weak Figure 1 Figure 1 Figure 2 Figure 2 Figure 3 Figure			Solar photovoltaic Concentrated solar power	n.a.	_							1.2	0.0	0.0	1668	143										0.5	1
Particle			Solar (subtotal)	-	_				١			1.2	4.0	0.1	1754	151				- 1		- 1				ان. ا	~
Marche wind both both both both both both both both			Tidal, wave and ocean energy	n.a.								0.0	0.0	0.0	n.a.	n.a.				١		- 1				ا 9 ا	~
Note Production Productio			Onshore wind Offstore wind	1267 n.a.								0.0	5.3	000	9674 n.a.	832 n.a.										523	
Figure 1965 Figure 1964			Will power (sublotar)	1707					ı			0.51	3 -	1 0	73	700				1		- 1				 	`
English below Property Prop			Biogas	94.								0.9	0.3	0.1	431	37										2.5	
Full containing the property of the property			Bioliquids Biomass (subtotal)	n.a. 94								0.0	0.0	0.0	n.a. 504	n.a. 43										84	
Concessional REST Generalization Characteristics Conc			Total (according to Template Tables 10a/b)	5786								37.6	13.3	3.0	16967	1459											
Heating the configuration of Gentlemant 10 to 6 of 7 of 1			Gross final RES-E consumption (Template Table 4a)	7007								37.6	13.3	3.0	CC021	1459											9
Subtributes State better state of the control of th		Heating and cooling	Geothermal						_	24		1.3	0.3	0.1		23				0.1							
Significant series of the control of			Solar thermal							216		12.0	2.5	1.0		27.1				1.2						'	
Expension of the control of the co			Solid biomass							1012		56.4	11.7	4.5		1128											
According to Temporary Lineage Control of the Control of the Control of Con			Bioliquids							. i.		0.0	0.0	0.0		n e				0.0							
Advancement learn part			Biomass (subtotal)							1012		56.4	11.7	4.5		1128				5.1						,	
Hydrochamil bir jumps			Aerothermal heat pumps		m -					7 .		0.8	0.2	0.1		50 %				5.0							
Excitation that the party (selected)			Geometria near pumps Hydrothermal heat numps							, n.a		0.0	0.0	0.0		C7 U				7.0							
Transport Free English English Free English English Free English Engli			Renewable energy from heat pumps (subtotal)							17		0.0	0.2	0.1		127				9.6							
Transport Biochanical Place State Fig. 1906 1007 1701			Total (according to Template Table 11)							1269		70.8	14.7	5.7		1548				0.5							
Transport Bisechand Pole-FIRE House the first black of the first black b			Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)							1265		70.8	14.7	5.7		5 8 8				0.7							9
Hotheren below the control of the		Transport	Bioethanol / bio-ETBE							8		2.4	0.7	0.2		256				1.2							
Heating and conditions contact became become became beca			Biodiesel		1 1					99		3.6	1.0	0.3		130				9.0							
Revier block electricity Activative produced electricity Activative			Hydrogen from renewables							n.a		0.0	0.0	0.0		n.a.				 00		1					1
Total Coording of Perturbation REST Consequency (Terpular Table 4) 100.0 0.0			Renewable electricity							2		0.1	0:0	0.0		7				 8:						l I=	
This concerned in the Company Particles of t			Other biofuels							n.a		0.0	0.0	0.0		n.a.				 00						 2	
Alt Research co-operation mechanisms Conserting Research Conserting Rese			Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross Intal RES-T consumption (Template Table 4a) RES-T including Article 21 2 (Template Table 4b)							2021		6.1 6.1 6.1	7.1 7.1 7.1	0.5		393 393 393				∞,∞,∞,∞							
Cooperation mechanisms Transfer from other Member States and third countries n.a. 0.0		All RES excl. co-operation mech.			1					2050 2051 1690	1	114.3	31.4 31.4 25.9	9.1		3393 3393 2979				22.2							150
All RES incl. co-operation mech. Total (Template Table 4a) 1507 1000 22,5 1000 25,5 1000 25,5 1000 25,5 1000 25,5 1000 25,5 1000 25,5 1000 25,5 1000 25,5 1000 25,5 25		Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a.					n.a 257		0.0	3.9	0.0		n.a. 856				0.0		n.a. 529					120 20
Electricity Telectrone seconaries Electricity Elec		All RES incl. co-operation mech.	Total (Template Table 4a)		1507	-				1793		100.0	27.5	8.0		2537	-		1	4.1		1341	-				120
Heating and cooling reference securarie/ additional energy efficiency/ additional ener	i,		reference scenario/ additional eneroy efficiency/		5486		-			5061			100.0	22.6		5480		-		×		9179		-			
Activities sections Activities Activit		1	reference countries		9355					8641						87/13						0090					
reference scenaric/ additional energy efficiency/ additional energy efficiency/ and additional energy efficiency/ additional energy efficiency/ additional energy efficiency/ and additional energy efficiency/ and an additional energy efficiency/ and additional energy efficiency/ and an additional energy efficiency/ and a definiti		rreating and cooling	additional energy efficiency ^f		8355		10			864			100.0	38.6		8658			30.00	8.9	,, 0,	9674		ĭ		13	
nn reference scenario/ additional energy efficiency/ 21649 100.0 22714 100.0 23150 25262 24114 I. reference scenario/ redesces scenario/ redesces scenario/ redesces scenario/ redesces scenario/ redesces scenario/ redesces scenario/ redesces scenario/ n.a. 100. n.a. 100. n.a. n.a. n.a. name of version in redevable target/ Overlit cross-ball curselv/ redevable target/ redevable tar		Transport	reference scenario f additional energy efficiency f		8959		100			6774			100.0	29.1		6864 6253		-		8.1		5336		=		33	
reference scenario/ n.a. n.a. n.a. n.a. additional energy efficiency/ n.a. 0.0 n.a. 0.0 n.a. Transport florels target 6.9 9.1 11.9 11.9		Total before aviation reduction	reference scenario f additional energy efficiency f	.,,,	1649 1649			100.0		22714 22418				100.0		23150			10	0.0	5 5	5262 1114			10	.0	
69 9.1		Total after aviation reduction	reference scenario f additional energy efficiency f		n.a.			0.0		n.a n.a				0.0		n.a.				0.0		n.a. n.a.				0,1	
			Transport fuels target Overall renewable target ⁹					5'9						9.1						61						9.9	

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Spain 28 NOV 2011

Spain

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 225 provides a background to the above figures.

Spain

28	NOV	201	1
20	NOV	201	1

			[GWh]	ktoe	2005	- q[%]	260 [%]		[GWh] [kt	2010 [ktoe] [%] ^a	2010 a [%] ^b	، [وروار	p[%]	[GWh]	[ktoe]	2015	μ[%]] .[%] p[%	[GWh]		2020	_	6] .[%]	p[%]	Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower >10MW	n.a. n.a.	n.a. n.a.	0.0						1			n.a. n.a.	n.a. n.a.	0000	0000					0.0.0				103
		Hydropower (subtotat) Geothermal	33303	5055	0.00			1		- 1				36/32	3138	33.1	2.61		1			26.4			'	103
		Solar photovoltaic Concentrated solar power	405	404	0.0			1						9872 7913	849	8.9	2.2		1			9.5			'	121
		Tidal, wave and ocean energy	-	+ 0	0.0			1		- 1				0	0	0.0	0.0		ı			0.1				128
		Onshore wind Offshore wind Wind power (subtotal)	20729 0 20729	1782 0 1782	38.5 0.0 38.5			I						56786 300 57086	4883 26 4909	51.2 0.3 51.4	29.7 0.2 29.9		1			47.0 5.2 52.2			'	139 139 139
		Solid biomass Biogas Bioliquids Biolimass (subtotal)	2029 623 0 2653	174 84 0 28 0 28	3.8 0.0 4.9	2.1 0.6 0.0 2.7	0.7 0.2 0.0 0.0 0.9	0.00	3719 799 0 4517	320 4.4 69 1.0 0 0.0 388 5.4	2.5 0.0 0.0 4.3.1	5 11.3 5 0.3 0.0 1.6	0.0	4660 1302 0 5962	401 112 0 513	1.2 0.0 5.4 5.4	2.4 0.7 3.1	1.4 0.0 1.8	0.00	7400 2617 0 10017	636 225 0 861	4.9 1.7 0.0 6.7	2.9 1.0 0.0 3.9	2.0 0.7 0.0 2.7	0.00	149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	53773 58926	4624 5067 4624	100.0 109.6 100.0			l						110988	9543 10109 9545	100.0 105.9 100.0	58.1 61.6 58.1					0.00 05.3 00.0			'	- 62 - 9
	Heating and cooling	Geothermal		4	0.1			0.		1					S	0.1	0.0		0.0			0.2				154
		Solar thermal		19	1.7			 -:		1					308	7.0	1.9		0.3			11.4			'	160
		Solid biomass Biogas Bioliquids Biomass (subtotal)		3441 36 0 3477	96.9 1.0 0.0 97.9			14664	, e						3997 63 0 4060	90.8 1.4 0.0 92.2	24.3 0.0 24.7		2 284 			85.8 1.8 0.0 87.5			'	168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydothermal heat pumps Renewable energy from heat pumps Renewable energy from heat pumps		440%	0.0			19999							23 0 31	0.0 0.0 0.7	0.0 0.1 0.2		0.000			0.2 0.7 0.9				174 174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		3550 3550 3550	100.0 100.0 100.0			w w w	m m m	1					444 484	100.0 100.0 100.0	26.8 26.8 26.8		7.4.7 7.4.7			0.00 0.00 0.00			'	- 62 - 9
	Transport	Bioethanol / bio-ETBE		113	30.9			_							301	11.2	1.8		0.3		1	10.3				180
		Biodiesel		145	39.6			 -:	ľ						2169	80.5	13.2		2.3		1	8.62				186
		Hydrogen from renewables		0	0.0			19							0	0.0	0.0		0.0			0.0			'	061
		Renewable electricity		108	29.5			 -:							224	8.3	4:1		0.2			8.6				861
		Other biofuels		0	0.0			10:		1					-	0.0	0.0		0.0			0.1				204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)		366 366 366 366 366 366	100.0 100.0 100.0 100.0			ব্ৰ্ব্ৰ							2695 2695 2695 2902	100.0 100.0 100.0 107.7	16.4 16.4 16.4 17.7		3.2.8 3.1.8 3.1.8			00.0 00.0 11.2			!	
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		8433 8432 8983		00.00		m m æ	222	993 993 04	100.0				16419 16418 17208		0.00		7.4	888	22057 22058 23130				22.7 22.7 23.8	- 20
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.		0.0		9.9		i.a.	0.0				n.a. n.a.		0.0		0.0		n.a. n.a.		0.0			76 - 79
	All RES incl. co-operation mech.	Total (Template Table 4a)		8433				3	12	93	100.0				16419		0.00	52.6	7.4	2	2057	-				62-9
Final consumption	Electricity n	reference scenario/ additional energy efficiency ^f		25080 25080		1	100.0 24.6	9:	25	920		100.0	26.9		29647 28264		-	0.001	29.9	66	35816 32269		-	100.0	33.3	64
	Heating and cooling	reference scenario ^f additional energy efficiency ^f		40254 40254		=	100.0 39.5	v,	33.	33340 33340		100.0	35.8		32315 31452		_	0.001	33.2	2 3	31837 29849		_	100.0	30.8	99
	Transport	reference scenario f additional energy efficiency f		32407 32407		11	100.0 31.8	×.	30891 30875	91 775		100.0	33.1		34391 31222		1	100.0	33.0	66	39410 31681		-	100.0	32.6	89
	Total before aviation reduction	reference scenario f additional energy efficiency f		101845 101845			100.0	0.	93379 93226	26			100.0		100923 94593			=	0.001	111	112530 97041			10	0.001	70
	Total after aviation reduction	reference scenario/ additional energy efficiency ^f		n n n			0	0.0		n.a. n.a.			0.0		100866 n.a.				0:0	=	111882 n.a.				0.0	72
Target		Transport fuels target Overall renewable target					∞	8.7					11.0						13.8					2 1	10.0	55

Overall renewable larget?

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the sector-total (RES-E, RES-H/C or RES-T, see values highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in total RES (if applicable including co-operation mechanisms, see value highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the sector total of the final gross energy consumption (*Additional energy efficiency scenario*) only), see values highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the oad final gross energy consumption (*Additional energy efficiency scenario*), see value highlighted in bold).

Art 2.1 adjustment refor to do the column [Stoc] and and renewable electricity in road transport (times 2.5).

Art 3.2 adjustment reads for the years 2005 rafet to the base year in Tempine Table (*ee Table 47 types 64) to Table 56 (spage 57).

Art 5.2 adjustment reads for the years 2005 rafet to the base year in Tempine Table (*ee Table 47 types 64) to Table 56 (spage 57).

Be reference to Table 5.2 and 2015 2016 to the years 2010 and 2015 it is referred to Tables 1, 4a, 1,0ab, 11 and 12 it is meant to the Tempine rable (*pression and available for download at http://eur.ex.europa.eu/LexUriServ.do/buri=CELEX3209D0548:EN:NOT

France 28 NOV 2011

France

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 227 provides a background to the above figures.

7					
	Н1	ra	n	CE	_

28	NT	717	21	11	1

			[GWh]	[ktoe]	10	_	_				0	_			[ktoe		10	[%]	p[%]	[GWh]	[ktoe]	2020 [%]	_q [%]	[%]	p[%]	Page
Renewable	Electricity	Hydropower < IMW	n.a.	n.a.	1					1	1				n.a		1	0.0	0.0	n.a.	n.a.	0.0	0.0	0.0	0.0	103
production		rydropower in w - 10 m w Hydropower (subtotal)	n.a. 70240	n.a. 6040					n.a. 69024 S						n.a 6050			13.0	3.8	n.a. 71703	n.a. 6165	0.0 4 6.0 7	0.0	0.0	0.04	103
		Geothermal	95	∞				1						ı	27			0.1	0.0	475	4	0.3	0.1	0.1	0.0	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	202	707				ı						I	323	l		0.5 0.1 0.6	0.0	5913 972 6885	508 84 592	8.6 9.4 4.4	4.0 1.6 1.6	132	0.3	121
		Tidal, wave and ocean energy	535	94				ı						ı	89			0.1	0.0	1150	66	0.7	0.3	0.2	0.1	128
		Onshore wind Offshore wind Wind power (subtotal)	1128 0 1128	90 0 0 0 0				I						I	1946 688 2634	1		42 1.5 5.7	0.4	39900 18000 57900	3431 1548 4979	25.7 11.6 37.3	9.5 13.8	7.3 3.3 10.6	2.2 1.0 3.2	139 139 139
		Solid biomass Biogas Bioliquids Biomass (sulhoral)	3341 478 0 3819	287 41 32 328				l	4506 935 0 5441					8366 2129 0	183			0.0 4.0 6.0	0.00	13470 3701 0 0	318 0 0 1476	8.7 0.0 1.1	3.2 0.0 0.0 1.4	2.5 0.0 3.1	0.0	149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RESA: consumntion (Template Table 4a)	75839	6521 6521 6118				1							9938			21.4 20.3	6.2	155284 155284	13352 13352 12729	100.0 100.0	37.0 37.0 35.2	28.5	8.8	- 62 - 92
	Heating and cooling	Geothermal		130				_							310			0.5	0.2		200	2.5	1.4	8.0	0.3	154
		Solar thermal		38				10							465			0.7	0.3		726	4.7	5.6	1.5	9.0	160
		Solid biomass Biogas Bioliquids Bioliquids Biomass (subtotal)		9067 86 0 9153	96.5 0.9 97.4	57.0 1 0.5 0.0 57.5 1	13.2 5.4 0.1 0.1 0.0 0.0 13.3 5.5	14-00	5 5	9870 88.8 83 0.7 0 0.0 9953 89.5	8.8 47.2 0.7 0.4 0.0 0.0 0.5 47.6	2 15.0 4 0.1 0 0.0 6 15.1	0.00		12500 260 0 12760	83.1 1.7 0.0 84.8	45.6 0.0 46.6	19.8 0.0 20.3	7.8 0.0 8.0		15900 555 0 16455	80.6 0.0 83.4	0.0 0.0 45.6	26.5 0.9 0.0 27.4	0.0 0.0 10.6	168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		77 11.a.				10000							1080 425 1505			0.7 0.0 2.4	0.7 0.0 0.0		1280 570 n.a. 1850	6.5 0.0 9.4	3.5 1.6 0.0 5.1	2.1 0.0 3.1	0.8 0.0 1.2	174 174 174 174
		Total (according to Template Table 11) Sum of all rechnologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		9397 9397 9397				1999	===						1504C 1504C 1504C			23.9 23.9 23.9	9.4		19732 19732 19732	100.0 100.0 100.0	54.6 54.6 54.6	32.9 32.9 32.9	12.7 12.7 7.21	- 62 – 92
	Transport	Bioethanol / bio-ETBE		75	1			0		1	1				550		1	1.3	0.3		059	16.0	1.8	1.5	6.0	180
		Biodiesel		328				2	2	1					2375	1		5.4	1.5		2850	70.2	7.9	8.9	1.8	186
		Hydrogen from renewables		0				10							0			0.0	0.0		0	0.0	0.0	0.0	0.0	190
		Renewable electricity		141	1						1				260		1	9:0	0.2		402	6.6	Ξ	1.0	0.3	198
		Other biofuels		0				10							30	1		0.1	0.0		160	3.9	4.0	6.0	0.1	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 2) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)*		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				le e e e	8888						3215 3215 3215 3372			7.3 7.3 7.7 7.7	220 200 200 110		4062 4062 4062 4427	100.0 100.0 100.0 109.0	122	9.6 9.6 9.6 10.5	2.6 2.9 2.9 2.9	- - 76 – 79 76 – 79
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		15918 16321 16462				v & 6	222	912 348 534	100				27402 27933 28193		100.0	62.3 63.5 64.1	17.1 17.5 17.6		36121 36744 37146		100.0	85.8 87.3 88.2	23.3 23.7 23.9	76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0				00	0:0						0.0	0.0	0.0		00		0.0	0.0	0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.	Total (Template Table 4a)		15918	1			5	20	912	100				27402		100.0	62.3	17.1		36121		100.0	82.8	23.3	62 - 92
Final consumption	Electricity	reference scenario f additional energy efficiency f		45317 45317		10	100.0 27.2	2	47.	378 849		100.0	0 27.9		49439			100.0	29.0		51500 46913			100.0	30.2	64 65
	Heating and cooling	reference scenario f additional energy efficiency f		68949 68949		9	100.0 41.	4	72	333 966		100.0	9 40.1		75716			100.0	39.4		79100			100.0	38.6	99
	Transport	reference scenario f additional energy efficiency f		45080 45080		10	100.0 27.0	0	53	100		100.0	0 27.8		55100 44000			100.0	27.5		57500 42100			100.0	27.1	89
	Total before aviation reduction	reference scenario f additional energy efficiency f		166689 166689			100.0	0	179 164	79877 64349			100.0		187610				100.0		195745 155268				0.001	70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a. n.a.			0.0	0		n.a. n.a.			0.0		n.a n.a				0.0		n.a. n.a.				0.0	72
Target		Transport fuels target Overall renewable target ⁹					9.6	9					12.8						16.0						10.0	55

The precinges refer to the values in the column 'Hotol' and express the share of the renewable technology in the sector-total (RES-E. RES-H/C or RES-T, see values highlighted in bold).

The precentages refer to the values in the column 'Hotol' and express the share of the renewable technology in total RES (if applicable including oc-operation mechanisms, see value highlighted in bold).

The precentages refer to the values in the column 'Hotol' and express the share of the renewable technology in the safety of the final gross energy consumption (Additional energy efficiency scenario' only), see values highlighted in bold).

The precentages refer to the values in the column 'Hotol' and express the share of the renewable technology in the onal milit gross energy consumption (Additional energy efficiency scenario' only), see value highlighted in bold).

Art 2.12 adjustment refor to double counting of certain bridges (times 2.2) and and renewable electricity in road transport (times 2.2).

Art 2.12 adjustment reads for the year 2005 refer to the "base year" in Temphate Table (to the years 2010 and 2015 stils referred to the research of the years 2010 and 2015 stils referred to Tables 1, 44, 1040, 11 and 12 it is meant to the Temphate propered by the European Commission and available for download at http://eur.lex.europa.eu/LexUriServ.do/buri=CELEX.32009D0548:EN:NOT

Italy 28 NOV 2011

Italy

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 229 provides a background to the above figures.

Italy

			[GWh]	[ktoe]	2005	_φ [%]	_				0	_]c [%] _q				50		_				0				Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower 1MW - 10 MW Hydropower > 10 MW Hydropower > 10 Hydropower +	n.a. n.a. n.a.	n.a. n.a. 3763	0.0	0.000																					
		Geothermal	5325	458	9.4	9.9		1						ı			-			1	_					ı	2 2
		Solar photovoltaic Concentrated solar power Solar (subtotal)	310	000	0.0	0.0		'						1		1				1	l					1	1272
		Tidal, wave and ocean energy	0	0	0.0	0.0		1						1						1						1	128
		Onshore wind Offshore wind Wind power (subtotal)	2558 0 2558	220 0 220	4.5 0.0 4.5	3.2 0.0 3.2		1		I				I		1				I		1				ı	18 8 8 18 8 8
		Solid biomass Biogas Biogas Bioliquids Biomass (subotal)	3477 1198 0 4675	299 103 0 402	6.2 0.0 8.3	4.3 0.0 5.8 5.8		1	4758 2129 1758 8645					6329 4074 3309 13712						7900 1.3 6020 1.2 4860 1.9 18780						I	2
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	56356 56357	4846 4846 4847	100.0 100.0 100.0	69.8 69.8 69.8		1						ı						ı						ı	62
	Heating and cooling	Geothermal		213	11.1	3.1		0.2		l										1.2	6.	1					154
		Solar thermal		27	1.4	6.0		0.0												15.	15	1				ı	09/
		Solid biomass Boggas Bioliquids Bioliquids Biomass (ubboal)		1629 0 0 1655	85.0 1.4 0.0 86.4	23.5 0.0 23.8	2.4 0.0 4.2 4.2	 2882 2882		2206 5 26 7 7 2239 5	57.3 20 0.7 0 0.2 0 58.1 21	20.8 0.2 0.1 21.1	3.7 1.7 0.0 0.0 0.0 0.0 3.8 1.7		, w	3404 56 83 1 33 (3520 58	56.2 1.4 0.5 58.1	22.9 5.7 0.6 0.1 0.2 0.1 23.7 5.9		2.6 0.0 2.7	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2554 50 266 150 5670 5	50.2 23.2 2.5 1.2 1.4 0.7 54.2 25.1	22 22 24 20 10 24 20 20 20 20 20 20 20 20 20 20 20 20 20	339 002 1001 843	891 891 891	8888
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps		91 4 2	0.8 0.2 0.1	0.2 0.0		0:00							3						22.5					l	774
		Renewable energy from heat pumps (subtotal)		21	=	0.3		ا 0:0		- 1					=					4:	25						174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		1916 1916 1916	100.0 100.0 100.0	27.6 27.6 27.6		4 4 4 4 7 4							ততত					ۇ <u>ۇ</u> ۋ	222						62
	Transport	Bioethanol / bio-ETBE		0	0.0	0.0		0.0												1.3							180
		Biodiesel		179	56.3	2.6		0.1							1:					0.	18					'	981
		Hydrogen from renewables		0	0:0	0.0		0:0		- 1						- 1	- 1			91							6 6 1
		Renewable electricity		139	43.7	2.0		0.1							.,					1.2	.9						861
		Other biofuels		0	0.0	0.0		0.0												0.1						'	504
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)		318 318 179 338	100.0 100.0 56.3 106.3	4.6 2.6 4.9 9.9		0.2 0.2 0.2 0.2							88-8					ni ni wi sei	8888					76 – 75	67
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		6942 6941 7080		100.0		4.9 4.9 5.0		0615 0614 0785	000				44.2	382 381 145	000			4.01.4	214	190 189 858	95				6
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.		0.0		0.0		n.a. n.a.		0.0				n.a. n.a.		0.0		0:0	= -	127 n.a.	0 2	5.0 0.0 0.0		76 – 79 76 – 79	6 6
	All RES incl. co-operation mech.	Total (Template Table 4a)		6942		100.0		4.9	_	0615	100				14	382	10			.2	226	517	100				62
Final consumption	Electricity n	reference scenario f additional energy efficiency f		29749 29749			100.0	21.1	3 2	9505		100.0	.0 23.3		31,	353 165		100.0	.0 23.8	8:	350 322)34 227		100.0	24.2		64
	Heating and cooling	reference scenario $^\prime$ additional energy efficiency $^\prime$		68501			7 0.001	48.5	0.0	4194 8976		100.0	6.74		65:	65532 60081		100.0	.0 45.4	43	66499	661		100.0	46.0		99
	Transport	reference scenario $^\prime$ additional energy efficiency $^\prime$		39000			100.0	27.6	6.6	36467 37054		100.0	.0 28.		37.	37986 35513		100.0		26.8	38544 33972	544 972		100.0	25.5		89
	Total before aviation reduction	reference scenario $^\prime$ additional energy efficiency $^\prime$		141226 141226			11	0.001	13	134643 131801			100.0	_	140399 132422	399			100.0	0.1	145566 133042	366			100.0		70
	Total after aviation reduction	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		n.a.				0.0		n.a. n.a.			0.0			n.a. n.a.			0	0.0		n.a. n.a.			0.0		72
Target		Transport fuels target Overall renewable target ⁹						5.2					7.0						10	10.5					10.0		. 55

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Cyprus 28 NOV 2011

Cyprus

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 231 provides a background to the above figures.

28 NOV 2011 Cyprus

			[GWh]	Iktoel	2005	61 q1%	p1%1 c1%	[GWh]	[ktoe]	2010	6J q1%	p[%] 21%.	[GWh]	Iktoel	2015	6.81 ^b	2L%3	pL%1q	[GWh]	[ktoe]	2020	ος [%]	2[%]	pL%J	Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW	1			1	1	4	1		1	1		1			000	0.00	n.a.	n.a.		000	0.0	0.0	103
		Hydropower >10MW Hydropower (subtotal)	n.a. 0	n.a. 0												0.0	0.0	0.0	n.a. 0	n.a. 0		0.0	0.0	0.0	103 103
		Geothermal	n.a.	n.a.												0.0	0.0	0.0	n.a.	n.a.		0.0	0.0	0.0	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	000	000												3.0 7.5 10.5	0.9 2.3 3.3	0.2 0.6 0.9	309 224 533	27 19 46		10.1 7.3 17.4	4.2 3.0 7.2	1.2 0.9 2.0	121 121 121
		Tidal, wave and ocean energy	n.a.	n.a.					1						1	0.0	0.0	0.0	n.a.	n.a.	1	0.0	0.0	0.0	128
		Onshore wind Offshore wind Wind power (subtotal)	n.a. 0	n.a. 0					1						1	15.2 0.0 15.2	4.7 0.0 4.7	000	499 n.a. 499	n.a. 43	1	16.3 0.0 16.3	6.8 0.0 6.8	0.0	139 139 139
		Solid biomass Biogas Bioliquids Biomas (subtotal)	n.a. 0 n.a. 0	n.a. 0 n.a. 0				n.a. 30 30	1				n.a. 84 84 84		1	0.04	0.0	0.0	n.a. 143 n.a. 143	n.a. 12 12 12	1	0.0 7.4 0.0	0.0	0.0	149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	0 0	000												29.9 29.9 27.1	9.3 8.4 8.4	2.2 4.2 2.2	1175	<u>5</u> 55		38.4 38.4 38.4	16.0 16.0 16.0	4 4 4 8 8 8	- 76 – 79
	Heating and cooling	Geothernal		n.a.										n.a.		0.0	0.0	0.0		n.a.		0.0	0.0	0.0	154
		Solar thermal		41										75		44.2	14.8	3.6		06		34.4	17.2	4.0	160
		Solid biomass Biogas Bioliquids Bioliquids Biomass (subtotal)		n.a. 4	9.2 0.0 9.2	8.8 0.0 8.8 8.8	0.8 0.2 0.0 0.0 0.0 0.0 0.8 0.2		16 n.a. 18	21.0 1 2.6 0.0 23.6	14.3 1.8 0.0 16.1	3.4 0.8 0.4 0.1 0.0 0.0 3.8 1.0		20 5 n.a. 24	19.5 4.5 0.0 24.0	11.6 2.6 0.0 14.2	3.9 0.0 4.8	0.0 0.0 1.2		24 0.a. 9	19.5 4.9 0.0 24.4	9.2 2.3 0.0 11.5	4.6 1.1 0.0 5.7	0.3 0.0 1.3	168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		n.a. n.a. 0										n.a. n.a. 2		0.0	0.0	0.0		n.a. n.a. 3		0.0	0.0	0.0	174 174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		2 4 4 8 4	-				1					<u> </u>	1	59.4 59.4 59.4	19.8 19.8 19.8	4 4 4 6 4 9 6 4 9		124 124 124 124 124 124 124 124 124 124		47.0 47.0 47.1	23.5 23.5 23.5	8,8,8 8,8,8	
	Transport	Bioethanol / bio-ETBE		0										3		1.5	0.3	0.1		15		5.6	1.9	0.7	180
		Biodiesel		0					1					20	1	11.6	2.7	1.0		23	1	∞. ∞	3.0	1.0	186
		Hydrogen from renewables		0										0		0.0	0.0	0.0		0		0.0	0.0	0.0	190
		Renewable electricity		0										0		0.2	0.0	0.0		-		0.2	0.1	0.0	198
		Other biofuels		0										0		0.0	0.0	0.0		0		0.0	0.0	0.0	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)*		0000										2222		13.4 13.3 13.5 14.4	3.1 3.1 3.3	2222		388		14.6 14.6 14.4 29.3	5.0 5.0 4.9 10.0	7:1 7:1 4:6	
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		84 4 4 8 4 4					11 2 2 8 8	0.8				170 174 175		100.0	22.8 23.4 23.5	8.8.8 4.4.4.		263 263		100.0	X X X	7::::	76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0			0 0		0:0			00		0.0	0.0	0:0		00		0.0	0.0	0:0	76 – 79 76 – 79
	All RES incl. co-operation mech.	. Total (Template Table 4a)		84	-				114	9				170		100.0	22.8	8.2		263		100.0	34.2	11.7	62 - 92
Final consumption		reference scenario ^f additional energy efficiency ^f		374 374		01	100.0		464 463		10			573 548			100.0	26.3		683			100.0	28.3	64
	Heating and cooling	reference scenario $^\prime$ additional energy efficiency $^\prime$		530		01	100.0 28.1		480 480		10	100.0 25.0		517			100.0	24.5		551 527			100.0	23.5	99
	Transport	reference scenario f additional energy efficiency f		682 682		10	100.0 36.2		721 720		10	100.0 37.5		771 744			100.0	35.8		825 768			100.0	34.3	89
	Total before aviation reduction	reference scenario f additional energy efficiency f		1884			100.0		1921 1919			100.0		2150 2080				100.0		2380				100.0	70
	Total after aviation reduction	reference scenario f additional energy efficiency f		1661			88.2		1744 1742			8.06		1952				9.06		2159				90.3	72 73
Target		Transport fuels target Overall renewable target ⁹					2.9					4.9						7.4						10.0	55

Overall renewable larget?

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the sector-total (RES-E, RES-H/C or RES-T, see values highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in total RES (if applicable including co-operation mechanisms, see value highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the sector total of the final gross energy consumption (*Additional energy efficiency scenario*) only), see values highlighted in bold).

The percentages refer to the values in the column [Stoc] and express the share of the renewable technology in the oad final gross energy consumption (*Additional energy efficiency scenario*), see value highlighted in bold).

Art 2.1 adjustment refer to double counting of certain biolads (times 2.2) and and renewable electricity in road transport (times 2.5).

Art 2.1 adjustment reads for the years 2005 rafet to the "hange (see Tible 47 (page 64) to Tible 56 (fogge 27)).

Art 2.2 adjustment where see the state of the renewable electricity in road transport (times 2.2).

Are 2.2 adjustment and 2.2 adjustment to the Discissory and the see that 2.2 adjustment of the sears as defined in the Template, prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ.do/buri=CELEX.32009D0548:EN:NOT

Latvia 28 NOV 2011

Latvia

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 233 provides a background to the above figures.

Latvia 28 NOV 2011

			l GWb	[Ptoal	1.6	10 100	pL'ZOJ o	CWb1	[Ptoal	2010	J 9120	021c L03	pl pl	GWE	[%	l vo		pL%01 s		- L	2				Page	<i>9</i> 2
Renewable production	Electricity	Hydropower < 11MW Hydropower IMW - 10 MW Hydropower > 10MW						8 8 8 8	1			1]						1					===	1222
		Hydropower (subtotat) Geothermal	2942 n.a.	233 n.a.				2900 n.a.	- 1				219						ı							212
		Solar photovoltaic Concentrated solar power Solar (subtotal)	n.a. n.a.		1			n.a.	1				1999						1						1222	laa:
		Tidal, wave and ocean energy	n.a.	n.a.				n.a.											1							:1%
		Onshore wind Offshore wind Wind power (subtotal)	n.a. 47	4 ë. 4	1			58 n.a. 58	1										ı						1111	1222
		Solid biomass Biogas Biofiquids Biomass (subtotal)	36 n.a. 41	0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				8 64 72	1				 2582	271 393 n.a. r 664		1			642 584 584 1226						1	12222
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	3030	261 1 261 1 261 1				3036					1222						ı						76 –	1 &
	Heating and cooling	Geothernal		n.a.	1				1				0.0	1						n.a					I.	175
		Solar thermal		0	1				1				 2												Ĭ	1.0
		Solid biomass Biogas Biogas Biogas Biomass (subtotal)		1113 1 1.114 1.114						l			 =285	= ==						134, 4 4, 139,					= = = =	188888
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Rydrothermal heat pumps Renewable energy from heat pumps (subtotal)		n.a. n.a. 0	0.000	0.0 0.0 0.0 0.0 0.0 0.0	0.000		n.a. n.a. 0	0000	0.000	0000	0.0		n.a. 0.0 n.a. 0.0 n.a. 0.0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	0.000		n.a. n.a. 4	0.00	0 0.0 0 0.0 3 0.2	0.000	0.00	174 174 174 174	2222
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					I				===		1				139					92	1 %
	Transport	Bioethanol / bio-ETBE		0									13							=					ľ	1⊗
		Biodiesel		е.	1				1	1			19:			1				2				1	1	1%
		Hydrogen from renewables		0	ı				ı	l			 9												I	10
		Renewable electricity		4									 =												1	l≈
		Other biofuels		0	1 1					1 1			0:1							3					2	141
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b) ^c											000-							% % % <u>v</u>					76 - 26	5 5
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		1377 1378 1382	00				1320 1320 1323				L' L' 8	2555	888	001				191	8 6 1	100.0		1	76 – 37	15
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.		0.0			n.a. n.a.		0.0		0:0:		ri ri	0.0				n.a n.a	ي ب	0.0			76 – 79 76 – 79	15.5
	All RES incl. co-operation mech.	Total (Template Table 4a)		1377	10	-			1320	_			1.7	15	09	100				161		100.0			- 9/	15
Final consumption	Electricity n	reference scenario f additional energy efficiency f		581 581		100.0	0 13.7		588 584		-		14.5	9 9	86 46		100.0			86i 74i	0		100.0	15.6		25.5
	Heating and cooling	reference scenario/ additional energy efficiency ^f		2607 2607		100.0	0 61.5		2271 2251		_		55.8	2 2	25		100.0			311,	4 2		100.0	\$4.5		99
	Transport	reference scenario ^f additional energy efficiency ^f		982 982		100.0	0 23.2		1099		_	100.0	51	21	99		100.0	27.4		132	0 6		100.0	27.1		188
	Total before aviation reduction	reference scenario ^f additional energy efficiency ^f		4241 4241			100.0		4060			01	0.00	9 4	15			100.0		543. 479.	4 9			100.0		0.7
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a. n.a.			0.0		n.a. n.a.				0:0		n.a. n.a.			0.0		n.a.	ر د ا			0.0		22
Target		Transport fuels target Overall renewable target ⁹					32.6					34.	7					35.9						10.0		1 9

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Lithuania 28 NOV 2011

Lithuania

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 235 provides a background to the above figures.

Lithuania 28 NOV 2011

			[GWh]	[ktoe]	اد _	%] _p [%)]c [56]q	[GWh]] [ktoe]	2010	_	[%]ر	p[%]	[GWh] [i	[ktoe]	2015 [%] ^a [[%], [%]	[%]	(%) _q [GV	[GWh] [ktc	[%]	2020 [%] ^a [%] ^b		_		Page
Renewable	Electricity	Hydropower < 1MW Hydropower 1MW - 10 MW Hydropower 10 MW Hydropower (subtotal)	n.a. n.a. 451	n.a. n.a. 39								0.0 0.0 1.4	0.0 0.0 0.7													103 103 103
		Geothermal	0	0								0.0	0:0												1	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	000	000	1							0.00	0.00								1				1	121 121
		Tidal, wave and ocean energy	0	0					1		1	0.0	0:0			1			l		1				1	128
		Onshore wind Offshore wind Wind power (subtotal)	202	000						I		2.8 0.0 2.8	0.0		I				l						I	139 139
		Solid biomass Biogas Bioliquids Biomass (sultotal)	£40 <i>t</i>	000-	0.0 0.0 1.5	0.00	0.0 0.0 0.0 0.0 0.0 0.0	98 20 0 147	8 4 0 0 13 0 4 8	5.7 5.7 0.0 16.8	1.1 0.5 1.6	0.0 0.0 1.4	0.0	533 228 0 761	40°0.2	24.9 10.6 0.0 35.5	4.0 1.7 0.0 5.7	4.4 0.0 0.0 0.0 1	0.0 0.3 8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	810 413 0 1223	36 21 0 10 10 10 10	27.4 14.0 0.0 0.0 7	4.7 5.8 2.4 3.0 0.0 0.0 7.1 8.8	8 1.1 0 0.6 0 0.0 8 1.7	1	149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	460 460	40 1 40 1 38								83 83 83	2121												ı	- 79
	Heating and cooling	Geothermal		2	1				3			0.1	0.1						=							154
		Solar thermal		0					0			0.0	0.0						=						1	160
		Solid biomass Biogas Biofiquids Biomass (subtotal)		685 0 0 686					657	l		27.2 0.2 0.0 27.4	13.1 0.0 13.2		l				12282	9 0					ı	168 168 168 168
		Aerothermal heat pumps		n.a.					n.a.	1		0.0	0.0		1				19	п					1	174
		Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtoral)							n.a. 0.			0.00	000						997							174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		688 1 688 1 688					999	l		27.6 27.6 27.6	13.2 13.2 13.2							999					ı	- 79
	Transport	Bioethanol / bio-ETBE		_					13			1.0	0.3						5.							180
		Biodiesel		3					42			3.2	8.0						4	-					1	186
		Hydrogen from renewables		0					0			0.0	0.0						0:						1	190
		Renewable electricity		0					°			0.0	0.0						19						1	861
		Other biofuels		0	1				0	1		0.0	0.0		1				19:		1				1	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final REST consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4a)		4444					8888			4 4 4 4 2 1 1 1	====						19999						l	99
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		730 732 732	22				797 797		100.0	59.6 59.8 59.8	15.8 15.8 15.8		1142 1190 1189	22			400	444	74 76 75	000				- 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0	0.0		00		0.0	0.0	0.0		00		0.0		0:0		00	0.0			76 – 79 76 – 79	- 79
	All RES incl. co-operation mech.	. Total (Template Table 4a)		730	9		14.9		795		100.0	59.6	15.8		1142	=			4.	14	74	100				- 79
Final consumption	Electricity n	reference scenario ^f additional energy efficiency ^f		985		100.0	5.0 20.1		913			100.0	18.1		1053 1048		100	100.00	<i>L</i> :	21	93		100.0	9.61 0		64
	Heating and cooling	reference scenario f additional energy efficiency f		2583 2583		100.0	.0 52.6		2417			100.0	48.0		2697) <u>S</u>	100.0 46.4	4	28	88 84 84		100.0	4.		99
	Transport	reference scenario f additional energy efficiency f		1133		100.0	0.0 23.1		1336			100.0	26.5		1554 1527		100	100.0 27.2	.2	18	17 34		100.0	0 28.:		89
	Total before aviation reduction	reference scenario f additional energy efficiency f		4907			100.0		5034 5031	_			100.0		5698 5610			100.0	0.1	62	96 84			100.0		70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a. n.a.			0.0		n.a. n.a.				0.0		n.a. n.a.				0.0		n.a. n.a.			0.0		72
Target		Transport fuels target Overall renewable target g					15.0						16.6					81	18.6					10.0		56
					0000		0.00																			1

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Luxembourg 28 NOV 2011

Luxembourg

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 237 provides a background to the above figures.

28 NOV 2011 Luxembourg

					2005					2010						2015						2020				Page
			[GWh] [[60]		_	Ľ	[GWh]	[ktoe]	[%] _a	_q [%]	[%] _c	_p [%]	[GWh]	[ktoe]	[%]a	[%] _p	[%]	_p [%]	[GWh]	[ktoe]	[%]a			_p [%]	
Renewable	Electricity	Hydropower < 1MW	n.a.	n.a.				n.a.	n.a.	0.0	0.0	0.0	0.0	n.a.	n.a.	0.0	0.0	0.0	0.0	n.a.	n.a.	0.0		0.0	0.0	103
production		Hydropower IM W - 10 MW		n a.				n n		0.0	0.0	0.0	0.0	i e	n n	0.0	0.0	0.0	0.0	ej e	е; с п	0.0	0.0	0.0	0.0	103
		Hydropower (subtotal)		∞				107		41.8	10.3	1.7	0.2	107	6	19.0	4.0	1.7	0.2	124	Ξ	15.9	2.2	1.9	0.2	103
		Geothermal	0	0				0			0.0	0.0	0:0	0	0	0.0	0.0	0.0	0:0	0	0		0.0	0.0	0:0	110
		Solar photovoltaic		,				20			10	0 3	6	65	9	5	2.4	0	=	84	7			-		121
		Conceptrated solar power	0 9	100				908			0.0	0.0	0.0	0 4	0 9	0.0	0.0	0.0	0.0	0 5	0.		0.0	0.0	0.0	121
		Tidal. wave and ocean energy		٥ ا				10			0.0	000		3 0		0.0	0.0	0.0	. 00	5 0	0		0.0	0.0		128
		Onshore wind		4				109			×	00		102	17	34.0	7.1	3.0		230	21		4.2	3.6		130
		Offshore wing Offshore wing Wind nower (subrotal)	100	0 4				308			0.0	0.0	0.0	0 6	0.5	0.0	0.0	0.0	0.0	300	0.5		0.0	0.0	0.0	139
		Solid hisman		,				8 8			5 6	3				13.7	0,0	5 -		1001	1 2		1 2	0.0		170
		Solid blomass Biogas		7 72				34			4.7	0.7	0.0	123	=	21.8	4.6	7.6	0.2	84	12		5.6	2.2	0.3	149
		Bioliquids Biomass (subtotal)	n.a. 46	n.a. 4				0 02			0.0	0.0	0.0	500 500	0 [35.5	0.0	3.2	0.0	334	200		0.0	0.0	0.0	149 149
		Total (according to Template Tables 10a/b)		18				256			24.7	4.0	0.50	264	48	100	21.0	0 8	=	780	129		13.0	00	-	
		Josa (according to Template Tables 10ab) Sum of all Technologies (Template Tables 10ab) Gross final R.ES-E consumption (Template Table 4a)	214	225	100.0 46.0 97.8 45.0			257		100.4	24.8	0.4	200	564	8 4 4	0.001	21.0	6.8	123	781	69	100.1	13.9	0 00 00	12.2	- 62 – 92
	Heating and cooling	Geothermal		n.a.					0		0.0	0.0	0.0		0	0.0	0.0	0.0	0.0		0		0.0	0.0	0.0	154
	,	Solar thermal		0					-		1.1	0.1	0.0		2	3.5	6.0	0.2	0:0		œ		1.7	9.0	0.2	160
		Solid biomass		16					19		21.3	1.5	0.4		39	68.4	16.9	3.2	60		70		14.5	5.5		168
		Biogas		. 3					S		2.6	4.0	0.1		22	21.1	5.2	0.0	0.3		13		2.7	0.0	0.3	891
		Bionquius Biomass (subtotal)		19 6					2		27.0	1.9	9.0		21	89.5	22.1	6.1	1.2		83		17.1	6.5	1.8	891
		Aerothermal heat pumps		n.a.					n.a.		0.0	0.0	0.0		n.a.	0.0	0.0	0.0	0.0		n.a.		0.0	0.0	0.0	174
		Geothermal heat pumps Hydrothermal heat pumps		n.a. n.a.					n.a. n.a.		0.0	0.0	0.0		n.a.	0.0	0.0	0.0	0.0		н. Б.		0.0	0.0	0.0	4.77
		Renewable energy from heat pumps (subtotal)		0					-		1.1	0.1	0.0		4	7.0	1.7	0.3	0.1		17		3.5	1.3	0.4	174
		Total (according to Template Table 11)							56		29.2	2.1	9.0		57	100.0	24.7	4.6	1.3		108		22.3	5.5	2.4	
		Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		25					88		29.7	2.1	0.0		S 5	0.00	24.7	0.4 0.6	<u> </u>		801		22.3	× ×	4 4	- 62 – 92
	Transport	Bioethanol / bio-ETBE							S		5.6	0.2	0.1		6	10.7	3.9	4.0	0.2		23		8.4	1.0	0.5	180
		Biodiesel		- 2					37		41.6	1.8	6.0		72	85.7	31.2	3.3	1.6		193		39.9	8.3	4.3	186
		Hydrogen from renewables							0		0.0	0.0	0.0		0	0.0	0.0	0.0	0.0		0		0.0	0.0	0.0	190
		Renewable electricity							2		2.2	0.1	0.0		4	8.4	1.7	0.2	0.1		10		2.1	4.0	0.2	198
		Other biofuels							0		0.0	0.0	0.0		0	0.0	0.0	0.0	0:0		0		0.0	0.0	0:0	204
		Total (according to Template Table 12)							543		48.3	2.1	0.1		84	100.0	36.4	3.8	1.9		226		46.7	9.7	5.0	
		Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a)							4 4		4.84 4.84	2.7	0.0		8 8 8 4	100.0	36.8	n (r	5. C		226		46.7	7.0	0.0	- 20
		RES-T including Article 21.2 (Template Table 4b)							43		48.3	2.1	1.0		82	101.2	36.8	3.8	1.9		234		48.3	10.0	5.2	76 – 79
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		39 40	98		0.9		888		100.0	2 4 4 2 4 4 4 4 4 3	21 22 22		186 185 190		80.5	8.4 8.4 8.6	4 4 4 5 5 6		391 391 401		80.8	16.8 16.8 17.2	8.6 8.9 8.9	76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries		n.a.		0.0	0.0		0 0		0.0	0.0	0.0		45		19.5	2.0	0.0		93		19.2	0.4	2.1	76 – 79
	All RES incl. co-operation mech.			 40	901				2		100.0	5.4	2.1		231		0.00	10.4	5.3		484		100.0	20.7	10.7	6/-0/
Finel	Haotricity			292					553						895						009					64
consumption		additional energy efficiency f		292		100.0	12.3		549			0.001	12.8		544		_	0.001	12.4		569			0.001	12.6	65
	Heating and cooling	reference scenario/		189		100	950		1293			0 001	000		1344		-	9	1 00		1436			9	90	99
	Transport	additional charge charge.		416		100			2309			000	600		2448				1.02		2584				0.02	89
		additional energy efficiency ^f		416		100.0	52.5		2086			100.0	48.8		2211		_	100.0	50.4		2334			100.0	51.5	69
	Total before aviation reduction	reference scenario/ additional energy efficiency/		605			100.0		4558 4273				0.001		4760 4386			-	0.001		5019 4530			-	0.001	70
	Total after aviation reduction	reference scenario/		457			o y		4426				2 90		4641				1, 790		4915				0 20	72
E		additional energy emerciney		2			20.00		414				C.U.		C#7#				20.7		0664				0.17	
larget		ransport uets target Overall renewable target ⁹					0.9						2.9						5.4						0.11	56
a The perc	entages refer to the values in the colur antages refer to the values in the colur	^a The percentages refer to the values in the column '[ktoe]' and express the share of the renewable technology in the sector-tot. ^b The percentages refer to the values in the column '[ktoe]' and express the share of the renewable technology in total RES (if it	in the sector-in total RES (ital (RES f applica	E, RES-l	I/C or RI ng co-op	SS-T, see val eration mech	ues high nanisms,	ghted in b se value h	lighted in bold). see value highlighted																
The perc	entages refer to the values in the colur entages refer to the values in the colur	mn '[ktoe]' and express the share of the renewable technology in the state of the renewable technology.	in the sector t in the total fir	tal of the Il eross e	final gro	s energy sumption	consumpt (before a	on (' <i>Additic</i> jation reduc	dditional energy effic reduction of the Add	y efficien e Addition	cy scena	<i>io</i> ' only v <i>efficier</i>	, see value	scenario' only), see values highlighted in bold). I energy efficiency scenario), see value highlighted in bold)	ted in bc ue highl	old). ighted in	bold).									
e Art. 21.2	adjustment refers to double counting	e Art. 21.2 adjustment refers to double counting of certain biofuels (times 2) and and renewable electricity in road transport (ti	and transport	imes 2.5		-						3	,		•											
9 For the v	consumption, values for the year 200 pars 2005 and 2020 the shares as defit	In Tinal consumption values for the year 2005 refer to the 'base year' in Template Table 1 (see Table 47 (page 64) to Table 3 For the years 2005 and 2020 the shares as defined in Annex Lof Directive 2009/8/FG are presented for the years 2010 and 2	ge 64) to Tab	2015 it	s 73).) s referred	to the tra	jectory ne	1105 spoi	012 and	102-5102	9															
General: v	here is referred to Tables 1, 4a, 10a/b	, 11 and 12 it is meant to the Template, prepared by the Europe	an Commissi	n and av	ilable for	downloa	d at http://	load at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOT	pa.eu/Ley	'UriServ/	LexUriS	rv.do?ur	i=CELEX	:32009D0;	548:EN:	NOT										

Hungary 28 NOV 2011

Hungary

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 239 provides a background to the above figures.

28 NOV 2011 Hungary

			CWP	Prop	2005	39 LGC	0 [02]	Fixed	[host]	2010	91.70	07.00	p.	FORME	[tros]	2015	95	10 102.14	pl [CWP.]	1	2	2020	10	[20]		Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower 100MW Hydropower 700MW	n in	na.	` I	-	-1	n.a. n.a. 194	n.a. n.a. 17	0.0	0.00	-	1			0.00	1	-		1		0.00 64	-	0.0 0.0		103
		Geothermal	n.a.	n.a.				0	0		0.0		I	29											1	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	n.a. 0	n.a. 0.a.				000	000		0.00		I	26 26 26					l						1	121
		Tidal, wave and ocean energy	n.a.	n.a.				0	0		0.0		ı	0					l		1				1	128
		Onshore wind Offshore wind Wind power (subtotal)	n.a. 0	n.a. 0				692 0 692	909		4.0.4 4.0.4		I	1377 0 1377					I						ı	139 139 139
		Solid biomass Biogas Bioliquids	n n n	n n n				1870 85 n.a.	161 7 n.a.		0.5		l	1988 262 n.a.					I		1					149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	n.a. 0	n.a.				2843 2843	4 4 4 4 5 E		1822			3878 3878												62
	Heating and cooling	Geothermal		n.a.					101		7.5		9.0						7.	3						154
		Solar thermal		n.a.					9		6.4		10:						2						ı	160
		Solid biomass Biogas Biogas Biolatids Biothase (subtotal)		n.a. n.a. 0		0.00			812 0 n.a. 812		60.0 60.0 60.4		388 2 		800 7 30 30 n.a. 7				10000	2 =2	1225 65 56 3 n.a. (1281 68			12.4 0.6 0.0 13.0 6.	1	168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		n.a. n.a. 0	0.000	000	0.0 0.0 0.0 0.0 0.0 0.0		0 - 2 0	0.0 0.5 0.1 0.6	0.0 0.4 0.1 0.4	0.000	0.000			0.2 2.7 0.7 3.5	0.1 1.7 0.4 2.2	0.0 0.3 0.1 0.3	0.0 0.1 0.2			0.4 5.7 1.6 1.7	0.2 3.7 1.0 5.0	0.1 0.0 1.1 0.5 0.3 0.1 1.4 0.7	1	174 174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		n.a. 0 n.a.					955 549		70.6 68.8 70.6		 2:55						m m m	888					1	62 -
	Transport	Bioethanol / bio-ETBE		S					34		2.5		1.2		1				S	8						180
		Biodiesel		0					110		8.2		9.0						15	2					1	186
		Hydrogen from renewables		0					0		0.0		0.0						10:						'	061
		Renewable electricity		0	0.0		0.0 0.0		9		4.0		 8						 -:							861
		Other biofuels		0					0		0.0		0.0		1 1				0:1							204
		Total (according to Template Table 12) Sum of all technologies (Femplate Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)		5 n.a. 5	0.00.0 0.00.0	0.0 0.0 0.0 0.0 0.0			150 150 177				8: 8: 0: 8: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:		266 10 266 10 266 10 310 11	100.0 100.0 100.0 116.5			16 13 13 14	w w w w	535 100 535 100 535 100 598 111			2.7 2.7 2.7 2.7 3.0 3.0		
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		n.a. 5		0.0			1344 1337 1319	_		32.9 32.8 32.3	7.4 7.3		648 644 644	01		33.5 33.2 8 33.4 8	8.3	888	55 57 79	00 86				- 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.		0.0			00		0.0		0.0		00		0.0		0.0		00		0.0	0.0		76 – 79 76 – 79
	All RES incl. co-operation mech.	Total (Template Table 4a)		n.a.					1345	_			7.4		648	2			6.	28	79	100				- 79
Final consumption	Electricity n	reference scenario f additional energy efficiency f		3609		100.0	0 18.1		3682 3675		-	2 0.001	20.1	7 7	1169		100.0	.0 20.8	∞.	4506 4418	06 18		100.0	0 22.5	2	64
	Heating and cooling	reference scenario f additional energy efficiency f		12192		100.0	0 61.2		10520 10497		_	2 0.001	57.5		008		100.0	.0 54.	6	P0 8	12		100.0	.0 50.		99
	Transport	reference scenario ^f additional energy efficiency ^f		3964		100.0	0 19.9		4107		_	100.0	22.4	3, 4	5005 4922		100.0	.0 24.9	6.	53 54	5492 5349		100.0	.0 27.	2	8 %
	Total before aviation reduction	reference scenario ^f additional energy efficiency ^f		19909			100.0		18309			10	0.001	25 51	20288 19782			100.0	0.	20525 19644	25			100.0		70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a. n.a.			0.0		n.a.				0:0		n.a. n.a.			0	0.0		n.a. n.a.			0.0		73
Target		Transport fuels target Overall renewable target ⁹					4.3						0.9					∞	8.2					10.0	0.0	56

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Malta 28 NOV 2011

Malta

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 241 provides a background to the above figures.

Malta 28 NOV 2011

No. Color				[GWh]	[ktoe]	2005	6]° [%]	lc [26] ^d	[GWh]	[ktoe]	2010) [%] _b] ,[%]] p[%	[GWh] [ktc	[%]	2015 J* [%]	ib [56]°	c [%] ^d	[GWh]	[ktoe]	2020	0. 0.	[%] _c	p[%]	Page
Exercise below the control of the	enewable	Electricity	Hydropower < 1MW Hydropower 1MW - 10 MW	n.a.	l	0.0			n.a.	n.a. n.a.	0.0	0.0	0.0	0.0			l						0.0	0.0	0.0	103
Commany Comm			Hydropower >10MW Hydropower (subtotal)	n.a. 0	n.a. 0	0.0			n.a. 0	n.a. 0	0.0	0.0	0.0	0.0									0.0	0.0	0.0	103 103
Part			Geothermal	n.a.	n.a.	0.0			n.a.		0.0	0.0	0.0	0.0									0.0	0.0	0.0	110
The control of the			Solar photovoltaic Solar photovoltaic Solar (subsolar power	n.a. n.a.	n.a. n.a.	0.0			n.a.		41.6 0.0 41.6	6.8 0.0	0.0	0.0									6.7	0.0	0.0	121
Particular Par			Tidal, wave and ocean energy	n.a.	n.a.	0.0			n.a.		0.0	0.0	0.0	00									0.0	0.0	0:0	128
Exemple Selection Select			Onshore wind Offshore wind Wind power (subtotal)	n.a. n.a.	n.a. 0	0.0			000		0.0	0.00	0.0	0000									94.1 40.2	1.2 6.9 8.1	3.1	139 139 139
Figure F			Solid biomass Biogas	n.a. n.a.	n.a. n.a.	0.0			0 6		0.0	0.0	0.0	0.0									13.5	2.7	1.2	149 149
Figure 3			Bioliquids Biomass (subtotal)	n.a. 0	n.a. 0	0.0			n.a. 9		58.3	0.0	0.0	0.0									21.4	0.0	0.0	149 149
Heating and cooling			Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	n.a. 0	n.a. 0 n.a.	0.0			15		100.0 99.9 101.5	16.4 16.4 16.7	0.6 0.6 0.6	03									68.3 68.3 68.3	13.8 13.8 13.8	6.2	
Solutions Solu		Heating and cooling	Geothermal		n.a.	0.0				n.a.	0.0	0.0	0.0	0.0	п						n.a.		0.0	0.0	0.0	154
Significance in the control of the c			Solar thermal		n.a.	0.0				3	71.4	32.3	5.6	0.5							3		5.1	3.8	0.5	160
Experimental Exp			Solid biomass		n.a.	0.0				0 -	0.0	0.0	0.0	0.0			1				0,0	1	0.0	0.0	0.0	168
Constraint Maria Parison Constraint Maria Pa			Biologids Biologidas Biomograph		9 8 9	0.0				n.a.	0.0	0.0	0.0	700	ū						n.a. 4		0.0	0.0	0.0	897
Exercise Continued Hospitality Exercise Exercis			Diomass (subtotal)		0	0.0				-	0.62	6.21	5.2	7:0							7		2.6	4.0	0.0	100
Experimental paralyment Experimental loss paralymental paralymenta			Aerothermal heat pumps Geothermal heat pumps		n.a. n.a.	0.0				n.a. n.a.	0.0	0.0	0.0	0.0							n n n		0.0	0.0	0.0	174
Figure F			Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		n.a. 0	0.0				n.a. 0	0.0	0.0	0.0	0.0	=						n.a. 0		0.0	0.0	0.0	174
Transport Biochimal Myle-ETBE Biochima			Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		n.a. 0	0.0				4 4 4	100.0 100.0 99.2	45.3 44.9	7.9	0.7 0.7 0.7		1					440	1	8.2.2.8	6.1 6.2 6.2	0.7	
Holice of the control of the contr		Transport	Bioethanol / bio-ETBE		n.a.	0.0				2	58.7	22.4	1.1	0.3							9		10.6	3.5	1.0	180
Hydrogen from moveshies Hydrogen from moves Hydrogen from			Biodiesel		n.a.	0.0				-	41.3	15.8	8.0	0.2		1 25					7		12.9	4.3	1.2	186
Reservicing the electricity Reservicing to Fine detectricity Reservicing Reser			Hydrogen from renewables		n.a.	0.0				n.a.	0.0	0.0	0.0	0.0	g.						n.a.		0.0	0.0	0.0	190
The configuration mechanisms			Renewable electricity		n.a.	0.0				0	0.0	0.0	0.0	0:0							-		1.3	0.4	0.1	198
Transfer to the configuration of the configuratio			Other biofuels		n.a.	0.0				n.a.	0.0	0.0	0.0	0.0	-	1	1				n.a.	1	0.0	0.0	0.0	204
AIRES exct. co-operation mechanisms Co-operation mechanisms Co-operation mechanisms Co-operation mechanisms Transfer formout Table 4.0) Co-operation mechanisms Co-operation mechanisms Transfer formout Table 4.0) Co-operation mechanisms Transfer formout Table 4.0) Co-operation mechanisms Co-operati			Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T includino Article 2) 2 (Template Table 4b)		n.a. 0 n.a.	0.000				ω ω ω 4	100.0 100.7 100.7	38.2 38.2 38.5 53.8	8.000 8.000 8.000	0.0 0.0 0.0 0.0 0.0							4 4 C 8		24.8 23.5 23.5	8.2 7.8 7.8	2222	- - - - - - - - - - - - - - - - - - -
Cooperation mechanisms Transfer from other Member States and third countries n.a. 0.0 0.0 0.0 n.a. 0.0		All RES excl. co-operation mech			n.a. 0					∞ ∞ ∞		100.0	5.1	255			1-				55 55 55		100.0	33.0 33.1 33.5	9.0	76 – 79
AINRESi incl. co-operation mech. Total (Template Table 4a) na. 0.0 0		Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.					n.a. n.a.		0.0	0.0	0.0		ej ej	0 0				n.a. n.a.		0.0	0.0	0.0	76 – 79
Heuticity Total ference scenario/ additional energy efficiency Automatical energy effici		All RES incl. co-operation mech.			n.a.					∞		100.0	5.1	1.5		27	100				55		100.0	33.0	9.0	26 - 79
Heating and cooling reference scenario/ na. 0.0 0.0 46 160 8.8 66 100.0 11.2 76 12.1 100.0 12.1 Tansport Transport additional energy efficiency/ n.a. 0.0 0.0 152 100.0 3.0 100.0 27.3 27.4	nal nsumption		reference scenario ^f additional energy efficiency ^f		n.a.		0			226 215				42.5	6.6	85 44		100.0	43.4		291 270			100.0	8.4	64
Total deflore askiditoral energy efficiency/ and distributed energy efficiency/ and energy		Heating and cooling	reference scenario ^f additional energy efficiency ^f		n.a.					8 8		_	100.0	8.8		99		100.0	11.2		76			100.0	12.1	99 67
Total before aviation reduction reference scenario/ additional energy efficiency/ additional energy efficiency/ addi		Transport	reference scenario f additional energy efficiency f		n.a. n.a.		0			152				30.1		59 59		100.0			165			100.0	27.3	89
Total after aviation reduction reference scenariol n.a. n		Total before aviation reduction	reference scenario ^f additional energy efficiency ^f		n.a.			0.0		517 506			_	0.00	w w	77 61			100.0		625				0.001	70
Transport fuels target 10.0 10.		Total after aviation reduction	reference scenario f additional energy efficiency f		n.a. n.a.			0.0		n.a. 434				85.6	- 4	1.a. 90			87.4		n.a. 534				9.88	72
	uget		Transport fuels target Overall renewable target ^g					0.0						2.0					2.4						10.0	57

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Netherlands 28 Nov 2011

Netherlands

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 243 provides a background to the above figures.

28 NOV 2011 Netherlands

Renewable El				2 [ktoe] [%] n.a. 0.	NO	[%]		[GWh] [2 -		c [%] ^d	[GWh]	[ktoe]	2015 [%] ^a	5 [%] ^b	[%]،	_p [%]	[GWh]	[ktoe]	2020 [%] ^a	[%] _p	%] _° [6	p1%	Page
									П		l														
production	Electricity	Hydropower < 11MW	n.a.				0.0	n.a.		0.0			n.a.		1	0.0	0.0	0.0	n.a.	n.a.	0.0	0.0	0.0	0.0	103
		Hydropower IMW - 10 MW Hydropower >10MW					0.0	n.a.					n.a.			0.0	0.0	0.0	n.a.	n.a.	0.0	0.0	0.0	0.0	103
		Hydropower (subtotal)	100				0.0	127					184			0.4	0.1	0.0	184	16	0.4	0.2	0.1	0.0	103
		Geothernal	0	0 0.			0:0	0				0.0	0			0.0	0.0	0.0	0	0	0.0	0.0	0.0	 6	110
		Solar photovoltaic	40	3 0.			0:0	73					250			0.5	0.2	0.0	570	49	1.1	0.7	0.4	0.1	121
		Concentrated solar power Solar (subtotal)	0 9	0 6			0.0	73				0.0	250			0.0	0.0	0.0	570	0 6	0.0	0.0	0.0	0.0	121
		Tidal, wave and ocean energy	0	0 0			0.0	0					0			0.0	0.0	0.0	514	4	1.0	9.0	9.4	0.1	128
		Onshore wind	2067	178 28.	1		0.3	3667	1				9508			19.0	7.3	1.6	13372	1150	26.6	15.7	8.6	2.2	139
		Offshore wind Wind power (subtotal)		0 0.0 178 28.6		0.0	0.0	803 4470		7.5 3.2 42.0 18.1	.2 .1 3.6	6 0.1 6 0.8	4147			27.3	3.2 10.5	2.3	19036 32408	1637 2787	37.8 64.4	22.3 38.0	14.0 23.9	3.1	139 139
		Solid biomass	4758		1		0.8	5103	1				11189			22.3	9.8	1.9	11975	1030	23.8	14.0	 8	20	149
		Biogas Bioliouids					0.0	872 0					2161			0.0	0.0	0.0	4664 0	104	9.3	5.5	3.4	0.0	149 149
		Biomass (subtotal)					0.8	5975					13350			26.7	10.2	2.2	16639	1431	33.1	19.5	12.2	2.7	149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b)	7233 7248				27	10636 10645	915 10	00.0 43.0 00.1 43.0			27442			54.8 54.8	21.0	4.6 6.4	50317	4326 4326	100.0	58.9	37.0 37.0	8.3	
		Gross final RES-E consumption (Template Table 4a)		622 100.			1.2							2360	-	54.8	21.1	4.6		4326	100.0	58.9	37.0	8.3	62-92
H.	Heating and cooling	Geothermal		_			0.0							130		3.0	0.5	0.3		259	6.11	3.5	1.0	0.5	154
		Solar thermal					0:0							17		6.4	0.1	0.0		23	1.1	0.3	0.1	' 9	160
		Solid biomass Biogas		540 75.			0.1							904 174		14.0 4.0	2.5	2.5		650 288	29.8	8.6 0.0	2.6	272	891
		Bioliquids					0.0							0		0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	891
		Bio-SNG for grid feed-in Biomass (subtotal)		38 647 90.			0.1							202 80 80		22.8	8.0 8.0	0.4 1.9		582 1520	26.7 69.8	7.9 20.7	6.1	1.1 2.9	89 <i>I</i>
		Aerothermal heat pumps					0.0							81		1.9	0.3	0.2		117	5.4	1.6	0.5	0.2	174
		Geothermal heat pumps Hydrothermal heat pumps December of the pumps Hydrothermal heat pumps December of the pumps Hydrothermal heat pumps		n.a. n.a. 24			0.0							161		3.7	0.0	0.0		242	0.5	3.3	0.0	0.0	174
		Kenewabie energy from near pumps (subtodat)		- [- I - : - :		- 1					707	- 1	6.6.6		G		110	C:/1	1.0	C:1	' : :	*/-
		Total (according to Template Table 11) Sun of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		717 100.0 717 100.0 717 100.0		222	<u> </u>			100.0 100.0 100.0 42.				1380 1379 1380	99.9 100.0	32.0 32.0 32.0	5.6 5.6 5.6	2:7 7:2 7:2		2179 2179 2179	9 0.00	29.7 29.7 29.7	× × × ×	244	- 62 – 92
l _E	Transport	Bioethanol / bio-ETBE		0 0.			0.0							217		5.0	1.9	0.4		282	31.2	3.8	2.7	0.5	180
		Biodiesel		0 0.			0.0		1					350	1	8.1	3.1	0.7		552	61.0	7.5	5.2	' =	186
		Hydrogen from renewables		0 0.			0.0							0		0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	190
		Renewable electricity		8 100.			0:0							23		0.5	0.2	0.0		71	7.8	1.0	0.7	 	198
		Other biofuels		n.a. 0.			0:0		1					n.a.	1	0.0	0.0	0.0		n.a.	0.0	0.0	0.0	0.0	204
		Total (according to Template Table 12)		8 100.			0.0							591		13.7	5.2	Ξ		905	100.0	12.3	8.5	1.7	
		Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)		8 8 100.0 8 100.0 100.0	0.0 0.0 0.0 0.0	222	0.00		319 10 319 10 475 14	100.0 15.0 100.0 15.0 148.9 22.3	0.0 0.0 3.2.7 4.1			590 851 851	99.8 100.0 115.9	13.7 13.7 15.9	5.2 5.2 6.0	222		905 1097	100.0 121.2	12.3 14.9	8.5 10.3	1.7 2.1	- 76 – 79 76 – 79
⁴	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables (Jath, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables (Jath, 11, 12)		1339 1339 1348	100.0		25 25 25		2128 2128 2140	100		22 £		4307 4308 4328		100.0	37.7 37.7 37.9	8.8 8.3 8.4		7340 7339 7410		100.0	69.0 1 69.0 1 69.7 1	14.1 1.24 1.25	76 – 79
l _o	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00	0.0	0.0	0.0		00	0.0	l			00		0.0	0.0	0.0		00		0.0	0.0	0.0	76 - 79
^{<}	All RES incl. co-operation mech.			1339	100.0	11.8	2.5		2128	100.0	.0 18.2			4307		100.0	37.7	8.3		7340		100.0		1.4	62 - 92
Final	Electricity	reference scenario/	2 2	10347		0001	10.7	-	n.a.		1001	800		n.a.			0 001	7.10		n.a.		-	000	,	25
-	Hasting and cooling	reference evenue of	36	78/36		2007	1							2			1000			10011				r i	3 8
•	Surros and South	additional energy efficiency f	28	28436		100.0	52.6	2	24612		100.0	0 48.3		24618			100.0	47.6		24989		1	100.0	48.0	29
T	Transport	reference scenario/ additional energy efficiency/	==	11351		100.0	21.0	_	n.a. 1699		100.0	0 22.9		n.a. 11419			100.0	22.1		n.a. 10634		_	100.0	20.4	89
l _E	Total before aviation reduction	reference scenario/ additional energy efficiency/	3, 3,	54010 54010		=	0.001	5	n.a. 51008			100.0		n.a. 51698				100.0		n.a. 52088			2	0.00	70
=	Total after aviation reduction	reference scenario ^f	53	53717					n.a.					n.a.						n.a.					72
		additional energy efficiency f	52	53717			99.5	5	50240			98.5		50554				8.76		50532			5	7.0	73
Target		Transport fuels target Overall renewable target ⁹					2.4					4.7						97						10.0	57
a The percentag	not refer to the values in the colum	mn 'Iktoel' and express the share of the renewable technology in	the sector-fo	tal (RES.F	RFS-H/C	or RES.T	T. see values	blod in both shold	d in hold									2							;
b The percentag The percentag The percentag	ges refer to the values in the colur tes refer to the values in the colur es refer to the values in the colur.	b The percentages refer to the values in the column '[ktoe]' and express the share of the renewable technology in total RES (if apperent agreement and the process refer to the values in the column '[ktoe]' and express the share of the renewable technology in the escent out of The percentages refer to the values in the column '[ktoe]' and express the share of the renewable technology in the column '[ktoe].	total RES (i the sector to the total fine	f applicable tal of the fi I gross ene	nal gross e rgy consur		consumption (*. (before aviatio	nechanisms, see value highlight ption ('Additional energy efficie, aviation reduction of the Additi	alue highl energy eff 1 of the Ad	ed i	bold). enario'o rergy effi	n bold). scenario' only), see values highlighted in bold). l energy efficiency scenario), see value highlighted in bold)	dues highlig nario), see v	ghted in b	old). lighted in	ı bold).									
^e Art. 21.2 adjû f In 'Final const	istment refers to double counting	e Art. 21.2 adjustment refers to double counting of certain biofuels (times 2) and and renewable electricity in road transport (times 1) and and renewable electricity in road transport (times 1) for Efficial consummation's values for the wear 2005 refer to the shoes wear's in Termidian Table 1 (see Table 47) (name 64) to Table 56.	ad transport (times 2.5).	i (ē						1			•											
9 For the years	2005 and 2020 the shares as defin	o telet to the base year in template table 1 (see Table 4) (page ned in Annex I of Directive 2009/28/EC are presented, for the ye	ars 2010 and	2015 it is ;	eferred to	the trajector	ry periods	2011-2012	3 and 2015	5-2016.															
General: where	is referred to Tables 1, 4a, 10a/b,	, 11 and 12 it is meant to the Template, prepared by the Europea	n Commissic	n and avaii	able for de	wnload at k	utp://eur-l	ex.europa.	su/LexUri:	Serv/Lexl	JriServ.de	ex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32009D0548:EN:NOI	EX:32009L	00548:EN:	:NOT										

Austria 28 NOV 2011

Austria

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 245 provides a background to the above figures.

Austria 28 NOV 2011

										2010					- 1	l.C										Page
			[GWh]	[ktoe] [_	_	[ktoe]	[%] _a		[%] _c								_	%] [ac					1
Renewable production	Electricity	Hydropower < 1MW Hydropower 1MW - 10 MW	n.a. n.a.	n.a. n.a.					n.a. n.a.	0:0		0.0									n.a. .a.					103
		Hydropower >10MW Hydropower (subtotal)	n.a. 37125	n.a. 3192					n.a. 3314	0.0		28.8									1.a. C					103
		Geothermal	2	0				ı	0	0.0		0.0	1						ı		0				1	110
		Solar photovoltaic	21	2				l	1	0.2		0.1							1		26 (121
		Concentrated solar power Solar (subtotal)	21	0 7					7 0	0.0		0.0									20					121
		Tidal, wave and ocean energy	n.a.	n.a.					n.a.	0.0		0.0									'.a. (128
		Onshore wind	1343	115				l	175	4.5		3.1	1		1	l			l		2 6				1	130
		Wind power (subtotal)	1343						175	4.5		3.1									2 4					139
		Solid biomass Riogas	2507	216					355	9.1		6.3									3 06:					149
		Bioliquids Biomass (subtotal)	33					36 4720	406	10.1		0.1		36 4826					36 36		5 6					149
		Total (according to Template Tables 10a/b)		3552				ı	3902	100.0		69.3	1						ı		100				1	1 .
		Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	41314	3552 3480					3902	100.0		693									03 100					- 26
	Heating and cooling	Geothermal		19					19	0.5		0.2	0.1		l				1	ĺ	40					154
		Solar thermal		92					127	3.5		1.1	0.5						<i>L</i> :	2,) 69.					091
		Solid biomass		3025					3400	93.0		28.3	13.2						2:-	35	16.				ļ.	891
		Bioliquids Biomage (cultortal)		3033					0.5	0.0		0.0	0.0	,					.0.	192	0.5					897
		Digitals (sublocal)							CI+C	4.5%		1.07	5.51						ء ا د ا	00	05 05					9 2
		Aerothermal heat pumps Geothermal heat pumps							× 2 9	0.3		003	0.0						21	-i · · · }	382					4 4 2
		riydrothermai neat pumps Renewable energy from heat pumps (subtotal)		69					8 8	2.6		0.8	0.7						úν	- 5	31 63 6					174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Sum of all technologies (Template Table 11) DEC 11/Commonwealth (Template Table 14)		3213 10 3213 10	100.0 100.0 4 4 4	47.7 24			3657	100.0 100.0	46.0 46.0 6.0 6.0	30.5	241		l	100.0 100.0 100.0	45.4 45.4 31.		1664	445	79 10 (100.0 45.1 100.0 45.1				5
	Transport	Bioethanol / bio-ETBE		0					2 2	9.6		9.0	0.2						2 2	f	8 8					: 8
		Biodiesel		35					276	48.9		3.3			1	1			2	4	10 47				'	981
		Hydrogen from renewables		0					0	0.0		0.0	0.0		ı				0.		0				'	061
		Renewable electricity		162					171	30.3		2.1	0.7						7	2	72 31				'	861
		Other biofuels		∞					63	11.2		8.0	0.2		1 1			ll	e ₁	-	94 11		ll			504
		Total (according to Template Table 12) Sum of all technologies (Template Table 12)		205 1 205 1					564 564	100.0		6.8 6.8	222						4.4	∞ ŏó	56 100 56 100					
		Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)		205 11					26 26 26	100.0		6.8 6.8	222						4.0	∞ <i>p</i> .	36 100 76 114				76-79	79
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		6735 6808 6970	122		75.3 24.4 76.1 24.7 77.9 25.2		7952 7952 8123		100.0	95.4 95.4 97.4	30.9 30.9 31.6		8392 8392 8585	01 01 01	0.0 100.2 0.0 100.2 102.5	22 32.1 5 32.1 5 32.9	1.1.6	9266 9267 9539	966 39	100	.0 110.1 .0 110.1 113.4	34.2 1 34.2 4 35.2		6
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0			0 0		0.0	0.0	0.0		00		0.0		0.0		00	00	0.0		76-79	62.
	All RES incl. co-operation mech.	Total (Template Table 4a)		6735	10				7952		100.0	95.4	30.9		392	100	-			924	99	100	1			62.
Final consumption	Electricity	reference scenario/ additional energy efficiency ^f		5725 5725		100.0	7.00 20.7		5634 5634			100.0	21.9	2.6	1091		100.0		3	8 8	99,		100.0	.0 23.5		65
	Heating and cooling	reference scenario/ additional energy efficiency/		13206 13206		100.0	.0 47.8		12007			100.0	46.7	12 2	203		100.0		7	142	74 02		100.0	0. 47.2		99
	Transport	reference scenario ^f additional energy efficiency ^f		8945 8945		100.0	1.0 32.4		8336			100.0	32.4	. S. S	9055 8374		100.0	.0 32.		8 2	14		100.0	.0 31.0		89
	Total before aviation reduction	reference scenario/ additional energy efficiency/	(4.6)	27610 27610			100.0		25726 25726				0.001	25	27893 26113			100.0	0	306.	22 09			100.0	_	77
	Total after aviation reduction	reference scenario ^f additional energy efficiency ^f		n.a. n.a.			0.0		n.a. n.a.				0.0		n.a. n.a.			0.0	0	= =	n.a. n.a.			0.0		73
Target		Transport fuels target Overall renewable target ⁹					23.3						25.4					28.1	1.					34.0		57

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Poland 28 NOV 2011

Poland

Data provided for Poland in 2005 are not sufficient to produce the pie chart for this year.

28 NOV 2011 Poland

			I I I	1	2005	q. zo	pr.wi or.	Fine	1	2010	qr.ws.	20,10	p1.00	Engl	3	2015	dr so	21.20	pr.m	Fanci	1	2020	qr.w	21	7	Page
Renewable	Electricity	Hydropower < 1MW Hydropower MW 10 MW	in a	n.a.	0:0	0.0	-	n.a.	n.a.	0.0	0.0	0.0	0.0	-	Ι.	0.0	-	-		-		0.0	-	-		103
nonnond		riyunopowe I w w - 10 M W Hydropower S10MW Hydropower (subtotal)	n.a. 2201	n.a. 189	28.1	0.0	0.0	n.a. 2279	n.a. 196	21.5	333	0.0	0.0	n.a. 2439					0.0	n.a. 2969				0.0	0.0	103
		Geothermal	0	0	0.0	0.0		0	0	0.0	0.0	0.0	0:0						0.0	0					1	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	000	000	0.0	0.00		-0-	000	0.00	0.0	0.00	000 000						l						l	121 121 121
		Tidal, wave and ocean energy	0	0	0.0	0.0		0	0	0.0	0.0	0.0	0:0						ı						I	128
		Onshore wind Offshore wind Wind power (subtotal)	136 0 136	2021	3.6 0.0 3.6	0.00	0.0 0.0	2310 0 2310	199 0 199	21.8 0.0 21.8	3.4 0.0 3.4	0.0 1.6	0.0 0.3 0.3	7370 0 7541					ı	13160 1500 15210					I	139 139 139
		Solid biomass Biogas	1340	115	35.4	0.0		5700 328	490 28	53.7	8.3 0.5	4.1	0.0 0.0						1		1				1	149 149
		Bioliquids Biomass (subtotal)	1451	125	38.3	0.0		6028	518	0.0 56.8	8.8	0.0	0.0													149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	3787	326 326 n.a.	100.0 100.0 0.0	0.0	0.0 0.0	10618 10618	913 913 913	100.0 100.0 100.0	15.5 15.5 15.5	27. 27. 27.	212						l		2786 1 2786 1 2786 1				l	- 62 – 92
	Heating and cooling	Geothermal		n.a.	0.0	0.0			23	9.0	4.0	0.1	0.0						0.1							154
		Solar thermal		n.a.	0.0	0.0			21	0.5	0.4	0.1	0:0						0.3						1	160
		Solid biomass Biogas Bioliquids		n.a. n.a.	0.0	0.00	0.0 0.0		3846 65 n.a.	96.6 1.6 0.0	65.5 1.1 0.0	0.0 0.0 0.0	0.0 0.0						 2.4.0.	7					l	168 168 168
		Biomass (subtotal)		0	0.0	0.0			3911	98.3	9.99	12.1	6.4						9.6	٠,					- 1	168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		n.a. n.a. 0	0.000	0.0	0.0 0.0 0.0 0.0 0.0		n.a. n.a. 25	0.000	0.0 0.0 0.4	0.0	0.000			0.0 0.0 1.6			0.000						0.000	174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		n.a.	000	0.00	0.0 0.0		3980 3980 3980	100.0 100.0 100.0	67.8 67.8 67.8	12.3 12.3 12.3	6.5						 	7,3,3,					I	- 26 – 37
	Transport	Bioethanol / bio-ETBE		28	65.1	0.0	0.0 0.0		279	28.4	8.4	1.7	0.5						0.5							180
		Biodiesel		15	34.9	0.0	0.0 0.0		687	70.0	11.7	4.1	=						 						1	186
		Hydrogen from renewables		n.a.	0.0	0.0			n.a.	0.0	0.0	0.0	0.0						0.0						l 19	190
		Renewable electricity		0	0.0	0.0	0.0 0.0		15	1.5	0.3	0.1	0:0						 00						l I⊒	861
		Other biofuels		n.a.	0.0	0.0			n.a.	0.0	0.0	0.0	0.0						0.0						 =	204
		Total (according to Template Table 12) Sum of all technologies (Femplate Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)		n.a. 43	100.0 100.0 100.0 100.0	0.0	0.0 0.0		98.88 1.88 1.88 1.88 1.88	100.0 100.0 100.0 99.0	16.7 16.7 16.5 16.5	∾. ∾. ∾. ∾. ∞. ∞. ∞. ∞.	1.66		1376 1376 1376 1444	100.0 100.0 104.9		7.7 7.7 8.1	3222	(4(4(4(4	2018 1 2018 1 2018 1 2194 1	100.0 100.0 108.7	18.8 18.8 18.8 10.5	1.00.11	22.9 3.2 3.2	
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		n.a. 369 369		0.0	0.0 0.0		5873 5859 5874		100.0 99.8	35.0 34.9 35.0	9.6 9.6 9.6		7617 7594 7617	= -			911.9 911.9	222	725 0675 725	= -				- 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.		0.0	0.0 0.0		00		0.0	0.0	0.0		00		0.0		0.0		00		0.0	0.0		76 – 79 76 – 79
	All RES incl. co-operation mech.	Total (Template Table 4a)		n.a.		0.0	-		5873		100.0	35.0	9.6		7197	-		-	6.1	10	725	-				62 - 92
Final consumption	Electricity 1	reference scenario f additional energy efficiency f		n.a. n.a.			0.0 0.0		12900			100.0	19.7	1	15300		10	100.0	20.5	71	17400 14600		10	100.0 21.	Τ.	64 65
	Heating and cooling	reference scenario f additional energy efficiency f		n.a.			0.0 0.0		31600 32400			100.0	52.9	66	38800 33100		9	100.0	51.7	14 %	5200		9	100.0 50	=	99
	Transport	reference scenario f additional energy efficiency f		n.a. n.a.			0.0 0.0		16800			100.0	27.4		17900		10	100.0	27.8	21 21	19100		10	100.0 28		89
	Total before aviation reduction	reference scenario f additional energy efficiency f		n.a. n.a.			0.0		61300				0.001	7	72000 64000			10	100.0	8 8	82700 69200			10	0.001	70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a.			0.0		n.a.				0.0		n.a. n.a.				0.0		n.a. n.a.				0:	72 73
Target		Transport fuels target Overall renewable target ^g					7.2						8.8					1	10.7					2.11	10.0	57

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Portugal 28 NOV 2011

Portugal

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 249 provides a background to the above figures.

28 NOV 2011 Portugal

			[GWh]	[ktoe]	2005 [%]* [واہ او	olc [96] ^d	[GWh]			و[%] ا	ر [%]	p[%]	[GWh]	[ktoe]	S	_q [%]	ر%]د	p[%]	[GWh]	[ktoe]	202	_	[%]	p[%]	Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower > 10MW	n.a. n.a.	n.a. n.a.	1						0.0	0.0.0	0:0	n.a. n.a.	n.a. n.a.	1	0.0	0.0	0.0	n.a. n.a.	n.a. n.a.	0.00		0.0	0.0	103 103 103
		Hydropower (subtotal)	5118	. ا				ı			18.7	7.71	5.4	10111	955		17.6	18.8	5.0	14074	1210	39.6		21.8	6.2	103
		Geothermal	ç	۰	- 1			-		- 1	6.0	0.3	- - - - -	700	77	- 1	4.0	4.0	- - - -	488	74	4.	- 1	8.0	0.7	011
		Solar photovoltaic Concentrated solar power Solar (subtotal)	m 0 m	000							0.0 4.0.4	0.0 4.0.4	0.00	797 360 1157	83.8		0.6 1.8 1.8	0.6 2.0 2.0	0.2 0.5 0.5	1475 1000 2475	127 86 213	7.0 7.0		3.8 3.8 3.8	0.7 1.1	121
		Tidal, wave and ocean energy	0	0							0.0	0.0	0:0	75	9		0.1	0.1	0:0	437	38	1.2		0.7	0.2	128
		Onshore wind Offshore wind Wind power (subtotal)	1773 0 1773	152 0 152				l			19.6 0.0 19.6	18.6 0.0 18.6	4.7 0.0 4.7	13420 60 13400	1154 5 1152		21.3 0.1 21.3	22.7 0.1 22.7	0.0	14416 180 14596	1240 15 1255	40.5 0.5 41.0	l .	22.3 0.3 22.6	6.4 6.4 6.4	139 139 139
		Solid biomass Biogas Bioliquids Riomass (euheral)	934 1008 1076	80 8.78 071	1			1092 138 1170 2400			0.3 0.3 2.2 4.6	2.0 0.3 2.1 4.4	00.00	1468 368 1523 3358	32 32 131 380	1	2.3 0.6 2.4 5.3	2.5 0.6 2.6 5.7	0.00	1468 525 1523 3516	126 45 131 302	1.5	1	0.8 4.4 4.4 5.4	0.2	149 149 149
		Total caccording to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	8925 8925	767 1				ı			43.7	4 4 4	10.5	29430 29351	2531 2524 2531		46.7 46.6 46.7	49.9 49.7 49.9	13.3	35584 35586	3060	100.0 100.0 100.0		55.2 55.2 55.2	15.7	97
	Heating and cooling	Geothermal		1_					10		0.2	0.1	0.1		18		0.3	0.2	0.1		25	1.0		0.3	0.1	154
		Solar thermal		22	1				50		1.1	0.7	0.3		105	1	1.9	1.4	0.5		160	6.4	1	2.0	0.8	160
		Solid biomass Biogas Bioliquids Biolimass (subtotal)		1785 10 713 2508	70.6 4 0.4 28.2 1 99.1 6	46.2 22 0.3 (18.4 9 64.9 31	22.5 9.1 0.1 0.1 9.0 3.6 31.6 12.8		1514 10 655 2179	67.6 0.4 29.2 97.3	33.8 0.2 14.6 48.7	20.8 0.1 29.9	8.1 0.1 3.5 11.7		1515 23 801 2339	61.5 0.9 32.5 95.0	27.9 0.4 14.8 43.1	19.7 0.3 10.4 30.4	0.1 0.1 12.2 12.2		1484 37 801 2322	59.2 1.5 32.0 92.6	24.6 0.6 13.3 38.4	18.1 0.5 9.8 28.3	7.6 0.2 4.1 11.9	168 168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		n.a. n.a. 0					n.a. n.a. 0		0.000	0.000	0.000		n.a. n.a. 0		0.000	0.000	0.000		n.a. n.a. 0	0.000		0.000	0.000	174 174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		2530 2531 2529					2240 2239 2240	1	50.0 50.0 50.0	30.7 30.7 30.7	12:0 12:0 12:0		2462 2462 2462		45.4 45.4 45.4	31.9 31.9 31.9	12.9 12.9 12.9		2507 2507 2507	100.0 100.0 100.0	1	30.6 30.6 30.6	12.9 12.9 12.9	- 76 – 77
	Transport	Bioethanol / bio-ETBE		0	1				0		0.0	0:0	0.0		24	1	4:0	4:0	0.1		27	5.0		0.5	0.1	180
		Biodiesel		0	1				281		6.3	4.7	1.5		405	1	7.5	8.9	2.1		450	84.1		7.8	2.3	186
		Hydrogen from renewables		0					0		0.0	0.0	0:0		0		0.0	0.0	0:0		0	0.0		0.0	0.0	190
		Renewable electricity		12					20		4.0	0.3	0.1		37		0.7	9.0	0.2		28	10.8		1.0	0.3	198
		Other biofuels		0	1				0	1	0.0	0.0	0.0		0	1	0.0	0.0	0.0		0	0.0	1	0.0	0.0	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)*		2222					301 301 302 305		6.7 6.7 6.8 6.8	5.0 5.0 5.0 5.0	1.6 1.6 1.6 1.6 1.6		466 466 479		8.8.8.8 6.6.8 8.8.8	7.8 7.8 7.8 8.0	22.22.2 4.4.4.2		535 535 535 574	100.0 100.0 100.0 107.3		9.3 9.3 10.0	27 27 29	- 76 – 79 76 – 79
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		3866 3297 3310	51				4476 4496		100.0	74.1 74.1 74.4	24.1 24.2 24.2		5421 5422 5452		0.00	90.7 90.7 91.2	28.4 28.4 28.6		600 4 4 4 2 1003		100.0	105.2 105.2 106.2	31.0 31.3 31.3	79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0			00		0:0	0.0	0:0		00		0.0	0.0	0.0		00		0.0	0.0	0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.	. Total (Template Table 4a)		3866	2				4476		100.0	74.1	24.1		5421		0.00	7:06	28.4		6044		100.0	105.2	31.0	62-92
Final consumption		reference scenario ^f additional energy efficiency ^f		4558 4558		100			4730			100.0	25.4		5076 5076		_	0.001	26.6		5721 5547			100.0	28.5	64
	Heating and cooling	reference scenario/ additional energy efficiency/		7927 7927		100.0	.0 40.5		7286			100.0	39.2		7706		_	100.0	40.4		8371 8197			100.0	42.1	999
	Transport	reference scenario ^f additional energy efficiency ^f		6223 6223		100.0	31.8		6040			100.0	32.5		5980		_	100.0	31.3		6010 5743			100.0	29.5	89
	Total before aviation reduction	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		19582 19582			100.0		18592				100.0		19094			_	0.001		20082 19467				0.001	70
	Total after aviation reduction	reference scenario ^f additional energy efficiency ^f		n.a.			0.0		n.a. n.a.				0.0		n.a. n.a.				0.0		n.a. n.a.				0.0	72 73
Target		Transport fuels target Overall renewable target ⁹					20.5						22.6						25.2						31.0	58

a. The percentiges refer to the values in the column "Ktocl" and express the share of the renewable technology in the sector-total (RES-4E, RES-4HC or RES-7. see values highlighted in bold).

The percentages refer to the values in the column "Ktocl" and express the share of the renewable technology in total RES (applicable in ending co-operation mechanisms, see value highlighted in bold).

The percentages refer to the values in the column "Ktocl" and express the share of the renewable technology in the total final gross energy consumption (Additional energy efficiency scenario) only), see values highlighted in bold).

A The percentages refer to the values in the column "Ktocl" and express the share of the renewable technology in the total final gross energy consumption (before aviation reduction of the Additional energy efficiency scenario), see value highlighted in bold).

A Tall and a service of the values in the column "Ktocl" and express the share of the renewable electricity in road range of the values in the column "Ktocl" and express the share of the renewable electricity in road range of the values in the value of the renewable electricity in road range of the values of the value o

Romania 28 NOV 2011

Romania

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 251 provides a background to the above figures.

Romania 28 NOV 2011

			[GWh]	[ktoe]	S	_	%] _c [%]	D] _p [%]	[GWh] [k		2010 [%] ^a [%]	اه [%]]c [%]q	[GWh]	l [ktoe	2(015 1 [%] ^b	, [%]°	p[%]	[GWh]			2020 [%] ^a [%] ^b	_	_		Page
Renewable production	Electricity	Hydropower < 1MW Hydropower 1MW - 10 MW Hydropower 1MWW Hydropower (subtotal)	n.a. n.a. n.a. 16091	n.a. n.a. 1384						I	I						I										103 103 103
		Geothernal	0	0													1										110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	000	000				l	l					l			l .			l						'	121
		Tidal, wave and ocean energy	0	0																			1		1		128
		Onshore wind Offshore wind Wind power (subtotal)	000	000				I	1	1				I						I		1				1	139 139 139
		Solid biomass Biogas Bioliquids Biomass (ubotal)	0000	0000	0.000	0000	0.0	00000	48 19 00	4400	0.3 0.1 0.0 0.0 0.4 0.1	1991	2332	1450 600 0 2050	0 125 00 52 0 0 0	2 2.2 0.0 7.4	222 009 000 3.1	222 000 000 3.1	0.00	1950 950 0 2900	50 168 50 82 0 0 0	68 6.2 82 3.0 0 0.0 49 9.2	23 20 20 20 3.4	3 2.6 0 0.0 4 3.9	0.00	'	149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	16091 16091	1384 1384 1347				I						I						I						1	- 2
	Heating and cooling	Geothermal		17				1.1							5		1				000						154
		Solar thermal		0				0:0		1					-		1				7	1					091
		Solid biomass Biogas Bioliquids Biomass (subotal)		0000				 8888							291		1				384						168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps (subtotal)		0000				 2222									1									1	174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		3183 17 3516	1			 	440						300		1				403 403					'	62-
	Transport	Bioethanol / bio-ETBE		n.a.				0.0							12						16						180
		Biodiesel		n.a.				 00							24		1				32						186
		Hydrogen from renewables		n.a.				 0:							n.a		ı										061
		Renewable electricity		4				 -							4						S						861
		Other biofuels		n.a.	1			 0:							n.		1										204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)*		82 14 88 88				 2222							8 9 8 8						12888					1	
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		4921 4607 1441	_			25 25	1.44	1529 1549 1549	1001				576 577 577	200	100.0				72¢ 739 728	68 95 37	100.				6
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0		0.0		00	0:0						0.0					00	0:0	0.0			62 -
	All RES incl. co-operation mech.	. Total (Template Table 4a)		4921	_	-		6.	4	1529	100				576		100.0	107.3			726	58	100				- 79
Final consumption	Electricity n	reference scenario f additional energy efficiency f		4601		10	100.0	16.7	3, 5	350		100.0	.0 20.7		618 565	0 K		100.0	19.8		743	39		100.0	20.9		64
	Heating and cooling	reference scenario f additional energy efficiency f		18779		10	100.0 68	68.2	16	5056 7788		100.0	.0 61.0		18943 17572	2 3		100.0	61.4		20696 18316	96		100.0	60.5		99
	Transport	reference scenario f additional energy efficiency f		4139		91	100.0 15.0	0.5	1.4	4856 4725		100.0	.0 18.3		570 537	7		100.0	18.8		623	39		100.0	18.6		89
	Total before aviation reduction	reference scenario/ additional energy efficiency f		27519 27519			100.0	0.0	25	26261 25863			100.0		30838	oc v			100.0		3437	74			100.0		70
	Total after aviation reduction	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		n.a.			0	0.0		n.a. n.a.			0.0		n.a. n.a.	د د			0.0		n.a n.a	संसं			0.0		72
Target		Transport fuels target Overall renewable target ⁹					17.8	8.					19.0						20.6						10.0 24.0		- 58
				100	100	071.																					1

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2000 and 2012 to the shares are defined in Amer (10 Direceive expensed, for the year 2001 and 2012 to the control and 2011 to the Value of the Additional to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActviriServActviriane.

Slovenia 28 NOV 2011

Slovenia

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 253 provides a background to the above figures.

Slovenia 28 NOV 2011

			[GWh]	[ktoe]	NO.	_	p[%] [%]q	[GWh]		2010	10 [%] ^b	ر%]	p[%]	[GWh] [k	toe	100		pl%] 19		[GWh] [k	toe				p[%]	Page
Renewable	Electricity	Hydropower < 1MW Hydropower 1MW - 10 MW Hydropower 1MW - 10 MW Hydropower (subtotal)	n.a. n.a. 4099	n.a. n.a. n.a. 352								0.0 0.0 30.2	0.0 0.0 7.3		n.a. n.a. 392 8						n.a. 1.a. 440 8				0.0 0.0 8.3	103 103 103
		Geothermal	0	0				l	1			0.0	0.0		0						0				10:0	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	000	000				I	1			0.0	0.00		e0e	1					202				 2007 007	121 121 121
		Tidal, wave and ocean energy	0	0				l				0.0	0.0		0					1	0				100	128
		Onshore wind Offshore wind Wind power (subtotal)	000	000				I	1			0.0	0.0		606	1					91 0 92				 000 000	139 139 139
		Solid biomass Biogas Bioliquis Bioliquis Biomass (suboral)	82 32 114 114	رد 00 10	1.9 0.8 2.7	0.0	0.6 0.1 0.2 0.1 0.0 0.0 0.8 0.2	150 148 0 298	80 80 EE 20 28	333	11.5 0.0 2.9	2.02	0.3 0.3 0.5 0.5	272 351 n.a. 623	23 1.a. 30 54.1	5.1 6.6 0.0 11.7	2.1 0.0 4.9	1.8 2.3 0.0 0.0 1.1	0.00	309 367 n.a. 676	27 32 n.a. 58	5.0 6.0 0.0 11.0	22 0.0 4.3 4.3	2.0 4.3 4.3	0.0	149 149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	4213 4213	362 1 362 1 362 1				l				32.4 32.4 32.4	7.9 7.9 7.9		458 10 458 10 458 10						527 16 527 10 527 10				6.9 9.9	- 27 – 37
	Heating and cooling	Geothermal		16					31			0.0	9.4		19				4.0		20				0.4	154
		Solar thermal		3					,			0.3	0.1		10	1			2.0		21				0.4	160
		Solid biomass Biogas Bioliquids Biomass (ubotal)		104 0 64 44					14 24			20.8 0.0 20.8	8.0 0.0 8.4 8.4		483 0 112 8				 		28 28 525 8				0.0 0.0 0.0 0.0	168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewable energy from heat pumps Renewable energy from heat pumps (subtotal)		0000					4 (4 80			0.00	0.0		7 26 37				 		41 58 58 58 58				0.3	174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		465 1 465 1 465 1					444			22.3	9.0		561 10 561 10 561 10	1			888		625 16 624 9 625 10				1	
	Transport	Bioethanol / bio-ETBE		0					,			0.2	0.1		∞				2.2		19				0.4	180
		Biodiesel		0					3,			2.1	0.8		72 8	1			4		174 8				3.3	186
		Hydrogen from renewables		n.a.					n.a			0.0	0.0		n.a.	1			0:0		n.a.				0:0	190
		Renewable electricity		4					4,			0.3	0.1		7						=				0.2	861
		Other biofuels		n.a.	1				n.a			0.0	0.0		n.a.	1			 2		n.a.				10:0	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)°		4404					4444			7.2 7.3 7.3 7.3	0.0 0.0 0.0 0.0 0.0		86 10 87 10 79 9 10 86				<i>c.c.</i> & <i>c</i>		203 16 204 10 192 9 204 10				8.8.6.8. 8.0.8.	
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		828 827 831					728 837 880		100.0	50.4 50.4 50.7	17.7 17.7 17.9		099 098 106	100			999		344 355 355	==			5.2 5.2 5.5	76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0					0.0	0.0	0.0		00		0.0		0.0.		00		0.0		0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.	. Total (Template Table 4a)		828	Ĭ				87.		100.0	50.4	17.7		660	10			.2		344	=			5.2	62 - 92
Final consumption	Electricity	reference scenario f additional energy efficiency f		1272 1272		10	100.0 25.0		n.a 1196			100.0	24.3	1	n.a. 293		100	100.0 24.9	61	1	n.a. 342		1(0.001	25.2	64
	Heating and cooling	reference scenario $^\prime$ additional energy efficiency $^\prime$		2291 2291		01	100.0 45.0		n.a 1996	ء. ي		100.0	40.5	2	n.a. 2054		100.0	9.06 39.6	9.0	2	n.a. 029		=	100.0	38.1	99
	Transport	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		1526 1526		101	100.0 30.0		n.a. 1735			100.0	35.2	1	n.a. 1839		100.0	35	5.5	-	n.a. 953		1	100.0	36.7	89
	Total before aviation reduction	reference scenario ^f additional energy efficiency ^f	3,4,	5090			100.0		n.a. 4927	.: ~-			100.0	8	n.a. 5186			100.0	0.0	ν.	n.a. 5323			=	0.001	70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a. n.a.			0.0		n.a. n.a.				0.0		n.a. n.a.			°	0.0		n.a. n.a.				0.0	72
Target		Transport fuels target Overall renewable target ⁹					16.0						17.8					20.1	1.0					_ (1	10.0 25.0	58
						-																				

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2009 and 2015 told shares as defined in Amer (12 its meant to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActvirian and 2015 told to the European Commission and available for download at http://cert.ed/Lack.ViriServActviriServActvirian and 2015 to the Commission and available for download at http://cert.ed/Lack.V

Slovakia 28 NOV 2011

Slovakia

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 255 provides a background to the above figures.

Slovakia 28 NOV 2011

March Properties Properti				[GWh]	[ktoe]	2005 [%]* [%] ₀ [%	5]c [56]d	[GWh]	ı] [ktoe	20	10 [%]	[%]	_p [%]	[GWh]	[ktoe]	2015	² [%]	[%]	_p [%]	[GWh]	[ktoe]	2020	0 [%]	[%]ر	p[%]	Page
Substitution of the control of the c	Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower IMW - 10 MW Hydropower 20 MW Hydropower 20 (only only only only only only only only	n.a. n.a. 4638		1					I				4 4 4 5	n.a. 10.a. 444	0.00	0.00	0.0	0.0	a. a. a. 6	n.a. n.a. 464		0.00 0.0	0.0	0.0	103
Figure 1985 September Se			Geothermal	0	1 -				ı						28	2	4.0	0.2	0.1	0:0	30			0.2	0.1	0.0	110
Characteristic Char			Solar photovoltaic Concentrated solar power Solar (subjoral)	000	000	1			l			1			09T 09E	404	2.2	0.0	0.0	0.00	300	20 50 26	1	0.0	0.0	0.0	121
Particular control of the control			Tidal, wave and ocean energy	0	0							1			0	0	0:0	0:0	0:0	0:0	0	0		0.0	0.0	0.0	128
Section of the control of the cont			Onshore wind Offshore wind Wind power (subtotal)	0 0 7	-0-				l		1				480 0 480	404	6.7 0.0 6.7	3.8	1.5 0.0 1.5	0.0	960 0 560	\$ 0 \$		3.1 0.0 3.1	1.7 0.0 1.7	0.0	139 139 139
Figure 1985 Figure 1984			Solid biomass Biogas Biogaidab Bioliguidab Biomass (subtotal)	27 5 n.a. 32					I						725 624 n.a. 1349	62 54 n.a. 116	10.1 8.7 0.0 18.8	5.7 4.9 0.0 10.7	23 0.0 4.3	0.6 0.0 1.1	850 860 n.a. 1710	73 74 n.a.		4.6 0.0 4.9	2.6 0.0 5.1	0.7 0.0 1.3	149 149 149 149
Heating and cooling			Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	4677					l						7178	617 617 617	100.0 100.0 100.0	56.8 56.8 56.8	23.0 23.0 23.0	5.7 5.7 5.7	8000	889 889 889		8.8.8 8.8.8 8.8	24.0 24.0 24.0	6.1	- 76 – 79
Single formarial better part		Heating and cooling	Geothermal		ю						1					40	6.4	3.7	0.7	0.4		06		5.7	1.6	8.0	154
Solity-length Solity-lengt			Solar thermal		0						1					7	1.7	9.0	0.1	0.1		30		1.9	0.5	0.3	160
Configurational pumps Conf			Solid biomass Biogas Biodiquids Biomass (subtoal)		l	1			 	4 54	1					36 376 376	86.1 5.7 0.0 91.9	3.3 0.0 53.0	4.6 0.0 10.0	5.0 0.3 5.3		630 690 690	1	3.8 0.0 43.9	11.2 1.1 1.2 1.3	5.6 0.0 6.1	168 168 168
Exercise			Aerothermal heat pumps													- 6	0.2	0.1	0.0	0.0		e .		0.2	0.1	0.0	174
Transport Exercise Exercis			Geotherman heart pumps Hydrothermal heart pumps Renewable energy from heat pumps (subtotal)		000											7-4	0.00	0.17	0.0	200		4 × 0		0.00	0.1	0.0	4/1 4/1 4/1
Transport Biochiesed Volo-ETHE V			Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		l	I			lie ie ie	8 4 4	1	1				627 627 629	100. 0 100.0 100.0	57.7 57.7 57.7	10.9 10.9 10.9	8.8.8. 8.8.8.		820 820 820	1	52.2 52.2 52.2	14.6 14.6 14.6	7.3	- 67 – 97
High sequence of the control of th		Transport	Bioethanol / bio-ETBE		0					_						30	20.4	2.8	1.2	0.3		75		8.4	2.7	0.7	180
Publication throughous provided electrically a produced electrically			Biodiesel		0					9	ı					107	72.8	6.6	4.4	1.0		110		7.0	4.0	1.0	186
Accordance Acc			Hydrogen from renewables		0	l					ı					0	0.0	0.0	0.0	0.0		0	l	0.0	0.0	0.0	190
Comparigney the part of the conjugation mechanisms Comparigney the part of			Renewable electricity		∞											10	8.9	6.0	4.0	0.1		17		1.1	9.0	0.2	198
The difference of the concept of t			Other biofuels		0							1				0	0.0	0.0	0.0	0.0		S		0.3	0.2	0.0	204
nech Grassial REsourantion (Franchisch Franchisch Franchisch Grassian (Franchisch Franchisch Franc			Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)°		∞ ∞ ∞ ∞					0000						741 741 741	100.0 100.0 100.0 100.0	13.5 13.5 13.5 13.5	0.9 0.9 0.9 0.9	4444		207 207 207 275		13.2 13.2 13.2 17.5	7.5 7.5 7.5 10.0	2.1.8 2.1.8 4.4	
Cooperation mechanisms Transferton other Member States and third countries n.a. 0.0 0.		All RES excl. co-operation mech			772 763 771	200	` ` `			000	m vo m	100.0 99.2				1391 1381 1391		128.1 127.2	56.8 56.4 56.8	12.8 12.7 12.8		1715 1698 1715		109.1	62.4 61.8 62.4	15.1	76 – 79
All RESi iscl. co-operation mech. Total (Template Table 4a) Total (Template Table 4b) Total (Template Tabl		Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.					, u	0 :	0.0	0:0			305		0.0	0.0	0.0		143		9.1	0.0 5.2	0.0	76 – 79 76 – 79
Heating and cooling Teference scenario* 2412 1000 23.6 2460 1000 23.1 2861 1000 24.7 2865 1000 25.5 Heating and cooling Teference scenario* 1744 1000 17.1 1221 1000 22.1 1000 23.8 24.9 1000 23.8 24.9 29.8 Heating and cooling Teference scenario* 1744 1000 17.1 22.21 1000 23.8 24.9 1000 23.8 24.9 29.8 Transport Total before availation reduction Teference scenario* 10199 10633 11862 1000 10.8 Total after availation reduction Teference scenario* 10199 10633 1000 10.8 Total after availation reduction Teference scenario* 10199 10199 10183 10184		All RES incl. co-operation mech.			772	=				101	3	100.0	45.6			1086		100.0	44.3	10.0		1572		100.0	57.2	14.0	26-79
Heating and cooling reference scenarie/ 6162 100 631 649 649 649 661 50 649 649 661 50 649 661 50 661 661 661 661 661 661 661 662 663 <t< td=""><td>Final consumption</td><td></td><td>reference scenario/ additional energy efficiency/</td><td></td><td>2412 2412</td><td></td><td>100</td><td></td><td>10</td><td>246 246</td><td>0 0</td><td></td><td>100.0</td><td>23.1</td><td></td><td>2796 2681</td><td></td><td></td><td>100.0</td><td>24.7</td><td></td><td>3057</td><td></td><td></td><td>100.0</td><td>25.5</td><td>65</td></t<>	Final consumption		reference scenario/ additional energy efficiency/		2412 2412		100		10	246 246	0 0		100.0	23.1		2796 2681			100.0	24.7		3057			100.0	25.5	65
Total before a centariol from the telement control from the telement control from the telement control from the telement control from the termination reducion and tenergy efficiency and telement control from the termination reducion are regional remains a finite and the termination reducion are regional remains a finite and the telement control from the termination reducion are regional remains a finite and the telement control from the termination reducion are regional remains a finite and the telement control from the termination reducion are regional remains a finite and the telement control from the termination reducion and the telement control from the termination reducion are regional remains a finite and the telement control from the termination reducion are required. 11545 1000 12.54 1000 12.54 1000 12.54 1000 12.55 1000 12.55 1000 12.55 1000 12.55 1000 12.55 1000 12.55 1000 12.55 1000 12.55 1000 12.55 1000 12.55 1000 12.55 1000 12.55 12.55 12.55 12.55 12.55		Heating and cooling	reference scenario/ additional energy efficiency/		6162		<u> </u>		_	597 597			100.0	56.0		6210 5732			100.0	52.8		6449 5613			100.0	50.0	99
Total before a wintion reduction reference scenarie/ additional energy efficiency/ additional energy efficiency/ add		Transport	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		1744 1744		100			222			100.0	20.8		2556 2449			100.0	22.5		2938 2747			100.0	24.5	89
Total after aviation electron Total after aviation Total after aviation Total after aviation Total aviatio		Total before aviation reduction	reference scenario $^{\prime}$ additional energy efficiency $^{\prime}$		66101			100.0		1065	3 3			100.0		11562 10862				100.0		12443 11226				100.0	70
Transport fuels target 6.7 8.2 10.0 Overall renewable target 6.7 8.2 10.0 14.0		Total after aviation reduction	reference scenario ^f additional energy efficiency ^f		n.a. n.a.			0.0	_	2 2				0.0		n.a. n.a.				0.0		n.a. n.a.				0.0	72
	Target		Transport fuels target Overall renewable target ⁹					9.9	_					8.2						10.0						10.0	- 58

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2009 and 2015 told shares as defined in Amer (12 its meant to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActvirian and 2015 told to the European Commission and available for download at http://cert.ed/Lack.ViriServActviriServActvirian and 2015 to the Commission and available for download at http://cert.ed/Lack.V

Finland 28 NOV 2011

Finland

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 257 provides a background to the above figures.

Finland 28 NOV 2011

			CWF	Froel		21 qL 20	21c [021q	, COWE	- L	20.	10 reg1b	C021c	p1201	CWF		100	q120	21 21%	p1%	Cawbi	Floor	1 -			plz	Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower IOMW Hydropower JOMW Hydropower JOMW	n.a. n.a. 13015				1			0.00		0.00	1					1			n.a. n.a. 1739				0.00	103
		Geothemal	0							0.0		0:0							0:0		0				00	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	000	000						0.00		0.0							 000 000		000	1			 888	121
		Tidal, wave and ocean energy	0	0						0.0		0.0					1		0:0		0		1	1	100	128
		Onshore wind Offshore wind Wind power (subtotal)	150 0 150	13 o E1				l		0.0		0.0				1	1		0.0		301 215 516			1	 1.8.8.1 1.8.8.1	139 139 139
		Solid biomass Biogas Biolquids	9640 20 n.a.	829 2 n.a.				I		3 17.3 5 0.2 18.2		0.0 4.7		5300 50 4530		1			0.0		676 23 411				1.5	149 149 149
		Total Gacording to Template Tables 10a/b) Total Gacording to Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	23730 23720					1		100.0 100.0 100.1		25.8 25.8 25.8							8.0 8.0 8.0 8.0		2874 1 2865 2870				- 	- - 92
	Heating and cooling	Geothermal		0				_	ľ	0.0		0.0							0.0		0				0.0	154
		Solar thermal		0						0.0		0.0							0:0		0	1			0.0	160
		Solid biomass Biogas Bioliquids Biomass (subtoal)		5450 40 n.a. 5490				lme: c -	271 8 224 498(4	52.0 0.6 1 43.0 95.6		19.3 0.2 16.0 35.5							 2007 200		3940 60 2610 6610				0.2 0.2 3.5 1	168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Renewabbe energy from heat pumps		n.a. 10.a. 40.	0.0 0.0 0.7	0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.2	1000	n.a. n.a. 230	0.00	0.0 0.0 3.1	0.0 0.0 1.6	0.0		n.a. n.a. 530	0.0 0.0 8.4	0.0 0.0 5.9	0.0 0.0 3.5	0.0 0.0 0.1		n.a. n.a. 660	0.0 0.0 0.0 1.0	0.0 0.0 6.2	0.0 0.0 4.3	0.0	174 174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		5530 5530 5530					5210 5210 5210 5210	100.0 100.0 100.0		37.2 37.2 37.2							 23.1 3.1 3.1 3.1		1 0727 1 0727 1 0727	l .			S 8 8 8 S 8 8 8	- 62 – 92
	Transport	Bioethanol / bio-ETBE		0					7	30.4		1.7							0.4		130				0.5	180
		Biodiesel		0					150	65.2		3.7							 =		430	1			1.5	186
		Hydrogen from renewables		0						0.0		0.0							0:0		0	ı			0.0	190
		Renewable electricity		20					Z	8.7		0.5							0.1		40				 5	198
		Other biofuels		0						0.0		0.0							0.0		0				0.0	204
		Total (according to Template Table 12) Sum of all technologiest Chemplate Table 12, Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b) ^e		2008					2222	100.0 104.3 95.7 100.0		5.7 6.0 5.5 5.7							6.1.6 6.1.9 6.1.9		600 5600 1 800 1				220 280 280	- - - - - - - - - - - - - - - - - - -
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		7560 7570 7590				m == =	738 736 739	0~:-	100.0	183.1 182.8 183.6			8950 8963 8972				12.6 12.7 12.7		0700 0704 0735		l			76 – 79 -
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		00		0.0					0.0	0.0			00		0.0		0.0		00		0.0			76 – 79 76 – 79
	All RES incl. co-operation mech.	. Total (Template Table 4a)		7560	[-			7380		100.0	183.1			8950	-			12.6	_	0020	_				62 - 92
Final consumption	Electricity n	reference scenario $^\prime$ additional energy efficiency $^\prime$		7530 7530		10	100.0 28.7		n.a 7550			100.0	29.3		n.a. 8210		1	100.0	29.9		n.a. 8740		1		31.0	64 65
	Heating and cooling	reference scenario/ additional energy efficiency/		13970		100	100.0 53.2		n.a 14010			100.0	54.5		n.a. 5000		_	100.0	54.7	_	n.a. 5300		_		54.3	99
	Transport	reference scenario $^\prime$ additional energy efficiency $^\prime$		4220 4220		10	100.0 16.1		n.a. 4030			100.0	15.7		n.a. 4100		-	100.0	5.0		n.a. 4080		-	100.0	4.5	89
	Total before aviation reduction	reference scenario $^\prime$ additional energy efficiency $^\prime$		26260 26260			100.0	_	n.a. 25730				100.0	2	n.a. 27420)[0.001	2	n.a. 28170			10	0.001	70
	Total after aviation reduction	reference scenario $^\prime$ additional energy efficiency $^\prime$		n.a. n.a.			0:0	_	n.a. n.a.				0.0		n.a. n.a.				0.0		n.a. n.a.				0.0	72
Target		Transport fuels target Overall renewable target ⁹					28.5						30.4					(,,	32.8					- 0.7	10.0 38.0	59

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2009 and 2015 told shares as defined in Amer (12 its meant to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActvirian and 2015 told to the European Commission and available for download at http://cert.ed/Lack.ViriServActviriServActvirian and 2015 to the Commission and available for download at http://cert.ed/Lack.V

Sweden 28 NOV 2011

Sweden

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 259 provides a background to the above figures.

Sweden 28 NOV 2011

			[GWh]	Iktoel	2005	61 ⁹ F8	Jc [66]q	[GWh]	[ktoe]			268]	p1%	[GWh]	ktoe	2015	6J q1%	210 [26) pl%	GWhl	toel	2020	%l _p [6		_q	Page
Renewable	Electricity	Hydropower < IMW Hydropower IMW - 10 MW Hydropower IMW - 10 MW Hydropower IMW - 10 MW	n.a. n.a. 68421	n.a. n.a. 5883			1	n.a. n.a. n.a.		1			0.0	n.a. n.a. 68140	n.a. n.a. n.a. 5859					l <u>.</u>	n.a. n.a. n.a.					103 103 103
		Geothermal	n.a.	١.				1					0.0		n.a.				1		n.a.				1	110
		Solar photovoltaic Concentrated solar power Solar (subtotal)	n.a. 0	n.a. 0				I			1		' 888		n.a. 0				ı		n.a. 0				1	121
		Tidal, wave and ocean energy	n.a.	n.a.				1			1	1	0.0		n.a.		1		1		n.a.				1	128
		Onshore wind Offshore wind Wind power (subtotal)	877 62 939	75 5 81	1			1		1			. 001		713 30 743				1		1032 43 1075				1	139 139 139
		Solid biomass Biogra	7452	641				1	1		1	1	2.5		1167		1	1	1		1430				1	149
		Biologials Biomass (subtotal)	65 7570	651									2.5		6 1177						, 9 14 6					64 F
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	76931 76930	6615 1 6615 1 6605				l					19.9 19.9 19.9		7780 I 7780 I				l		8363 1 8363 1 8356				ı	- 62-9
	Heating and cooling	Geothermal		n.a.	ı				n.a.	ı			0.0		n.a.				0.0		n.a.					154
		Solar thermal		9	ı				9	l			0:0		9				 e		9				1	160
		Solid biomass Biogas Biolidas Biodias (subtotal)		6992 21 65 7078	1				7800 18 65 7883				21.6 0.0 0.2 21.8		8607 14 65 8686				 2007 - 		9415 11 9491				1	168 168 168
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps Rydrothermal heat pumps Renewable energy from heat pumps (subtotal)		0000	0.0000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.000		272 SS 349 349	0.6 0.3 4.2	0.3 1.7 2.2	0.3 0.2 2.4 2.4	0.0		00 5 4 5 69 5 5 4 5 69	5.8 0.6 7.4	3.1 3.1 3.9	0.6 3.5 0.3 1.4.4	0.3		150 815 80 1046	1.4 7.7 0.8 9.9	0.8 0.4 5.3	0.9	0.4 0.2 2.7	174 174 174 174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		7084 1 7084 1 7084 1					8237 8238 8237	1			222.8 222.8 22.8		9390 1 9389 1 9390 1				 		0543 1 0543 1 0543 1				1	- 62-9
	Transport	Bioethanol / bio-ETBE		4					251				0.7		358				0.1		465					180
		Biodiesel		6	1				88	1	1	1	0.2		170		1		5.0		251				1	186
		Hydrogen from renewables		0	ı				0	l			0:0		0				 00		0				1	190
		Renewable electricity		121					147				0.4		173				5.0		198				1	861
		Other biofuels							40				0.1		29				0.2		94					204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b) ^e		288 1 287 288 1 301 1					528 527 528 573				21 2 5 5 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1		768 768 1 844 1 1				220022		1008 1008 1108 1116					- - - - - - - - - - - - - - - - - - -
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		13689 13866 13986	==	0.0 183.2 1.3 185.5 187.2			15695 15809 15956		1	1	43.8 44.2		17702 17765 17937				7.0		9709 9716 9914					- 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.		0.0			n.a.		0.0		0.0		n.a. n.a.		0:0		0.0		n.a. n.a.		0.0			6-79
	All RES incl. co-operation mech.	Total (Template Table 4a)		13689	16	-			15695				43.5		17702	٦			0.7	1	6076	-				62-9
Final consumption	Electricity	reference scenario f additional energy efficiency f		12987 12987		100.0	97.6		13650				36.3		14314		10	100.0	35.0		4977 3293		101			64
	Heating and cooling	reference scenario f additional energy efficiency f		13190		100.0	1.0 38.2		15339			100.0	40.0		17488		=	100.0 41	1.7		9637		9	100.0 43.	2	999
	Transport	reference scenario f additional energy efficiency f		7473 7473		100.0	21.6		7923			100.0	21.3		8373 7898		10	100.0 21	21.0		8823		10	100.0 20.	7	89
	Total before aviation reduction	reference scenario f additional energy efficiency f		34519 34519			100.0		37826 36089			_	0.001		41132 37660			100	0.001	4.6	4439 9231			100	0.00	70
	Total after aviation reduction	reference scenario f additional energy efficiency f		n.a.			0.0		n.a. n.a.				0.0		n.a. n.a.				0.0		n.a. n.a.					72
Target		Transport fuels target Overall renewable target g					39.8						41.6					4	43.9					10	10.0 49.0	. 59

• The percentages refer to the values in the column '[Ktoe]' and express the share of the remewable technology in the sector-total (RES-H, RES-H/C or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in total RES ("applicable training on the remember seed to the values in the column '[Ktoe] and express the share of the remewable technology in the sector total of the final gross energy consumption ("Additional energy efficiency securatio) only), see values highlighted in bold).
• The pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacentages refer to the values in the column '[Ktoe] and express the share of the remewable technology in the oral final gross energy consumption (Defore aviation reduction of the Additional energy efficiency securatio), see value highlighted in bold).
• AT a pacantage refer to double counting of certain biofields (interes 2) and and remewable electricity in road ransport (times 2.5).
• In Final consumption' values for the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template Toke (we Table 47 (page 64) or Table 56 (page 37).
• For the year 2005 refer to the 'hase year' in Template presented, for the year 2009 and 2015 told shares as defined in Amer (12 its meant to the Template, prepared by the European Commission and available for download at http://cert.ex.europa.ed/Lack.ViriServActviriServActviriServActviriServActviriServActvirian and 2015 told to the European Commission and available for download at http://cert.ed/Lack.ViriServActviriServActvirian and 2015 to the Commission and available for download at http://cert.ed/Lack.V

United Kingdom 28 NOV 2011

United Kingdom

The *pie charts* have been based on absolute energy values in ktoe whereas the figure *titles* display information on the share of renewables in a specific year in comparison to the target for the year 2020. The shares also contain information about the future gross final energy consumption, which in some countries might increase considerably up to 2020. For some countries the above figures may therefore seem counter-intuitive. The table on page 261 provides a background to the above figures.

					2005					2010						2015						2020				Page
			[GWh]	[ktoe]	[%] _a	١-	١-	[GWh]		_	-1	o[%]	5	[GWh]	[ktoe]			[%] _c	[%]	[GWh]	[ktoe]			[%] _د	[%] _a	
Renewable	Electricity	Hydropower < 1MW	n.a.	n.a.	0.0			n.a.				0.0		n.a.	n.a.		0.0	0.0	0.0	n.a.	n.a.		0.0	0.0	0.0	103
production		Hydropower 110 M = 10 M W	n ii ii ii	n.a. n.a.	0.0			n.a n.a				0.0		n n	n.a.		0.0	0.0	0.0	n ii.	n.a.		0.0	0.0	0.0	103
		Hydropower (subtotal)	4921	423	0.0			2100				1.4		5730	493		5.3	1.5	0.3	6360	547		2.7	1.7	0.4	103
		Geothermal	n.a.	n.a.	0.0			n.a.				0.0		n.a.	n.a.		0.0	0.0	0.0	n.a.	n.a.		0.0	0.0	0.0	110
		Solar photovoltaic	∞ ,	-	0.0			9,				0.0		068	77		8.0	0.2	17.0	2240	193		0.9	9.0	0.1	121
		Concentrated solar power Solar (subtotal)	æ.;∞	n.a. 1	0.0			94				0.0		880	77		0.8	0.0	0.1	2240	193		0.0	0.0	0.1	121
		Tidal, wave and ocean energy	n.a.	n.a.	0.0							0.0		0	0		0.0	0.0	0.0	3950	340		1.7	1.0	0.2	128
		Onshore wind Offshore wind	2501 403	215	0.0			9520				2.6		20610 18820	1772		19.0	5.5	1.2	34150 44120	2936 3794	ı	14.3	9.1	2.0	139
		Wind power (subtotal)	2904	250	0:0			14150		- 1		3.8		39430	3390		36.4	9.01	2.3	78270	6730	- 1	32.8	20.8	4.7	139
		Solid biomass Biogas	4347 4762	374 409	0.0			5500				1.5		7990	687 542		4.8	2.1	0.5	20590	1770 479		8.6	5.5	0.3	149 149
		Bioliguids Biomass (subtotal)	0 6016	0 82	0.0			12330				3.3		14290	1229		0.0	3.8	0.0	26160	2249		0.01	0.0	0.0	149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b)	n.a. 16942	n.a. 1457	0.0		0.0 0.0 4.5 0.9	31630				8.6	1.9	60330	5187		55.7	16.2	3.6	116970	10058		49.0 49.0	31.0	7.0	
		Gross final RES-E consumption (Template Table 4a)		1506	0.0				2720			9.8			5189		55.8	16.2	3.6		10059		49.0	31.0	7.0	62 – 92
	Heating and cooling	Geothermal		1	0.2				n.a			0.0			n.a.		0.0	0.0	0.0		n.a.		0.0	0.0	0.0	154
		Solar thermal		50	4.9				34			0.1			34		0.4	0.1	0.0		34		0.2	0.1	0.0	160
		Solid biomass		493	83.6				305			0.5			904		9.7	1.6	9.0		3612		17.6	7.0	2.5	891
		Bioligas Bioliquids Riomage (subtotal)		n.a.	0.0				n.a			0.0			n.a.		0.0	0.0	0.0		3014 3014		0.0	0.0	0.0	897
		Diomass (suboral)		200	C+C				240			3			000		0.01		3		1001	- 1	12.1	0.7	. 0	207
		Aerothermal heat pumps Geothermal heat pumps Hydrothermal heat pumps		n.a. n.a.	0.00				120 120 1.a			0.00			354 n.a.		3.8 0.0	0.0 4.0 0.0	0.0		953 n.a.		0.0	0.0	0.0 0.0	174 174 174
		Renewable energy from heat pumps (subtotal)		0	0.0				186			0.3			248		5.9	0.1	9.4		2254	- 1	0.11	4.4	1.6	174
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		590 575 576	100.0 100.0 80.5		0.9 0.9 0.7 0.3		518 543 518			0.0 0.0 0.0			1537 1540 1537		16.5 16.5 16.5	555 888 888	333		6199 6202 6199		30.2 30.2 30.2	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 £ £ £	- 26 – 79
	Transport	Bioethanol / bio-ETBE		<u>«</u>	9.6				135			0.3			692		7.4	1.6	0.5		1743		8.5	4.2	1.2	180
		Biodiesel		22	30.3				198	1		2.1			1818		19.5	4.3	1.2		2462	1	12.0	5.9	1.7	186
		Hydrogen from renewables		0	0.0							0.0			0		0.0	0.0	0.0		0		0.0	0.0	0.0	190
		Renewable electricity		113	60.1				136			0.3			192		2.1	0.5	0.1		267		1.3	9.0	0.2	198
		Other biofuels		0	0.0					1		0.0			0		0.0	0.0	0.0		0	1	0.0	0.0	0.0	204
		Total (according to Template Table 12)		88	100.0				1132			2.8			2702		29.0	6.4	1.9		4472	1.	21.8	10.7	3.1	'
		Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)		8888	36.7 36.7	3.3.21	02 00 00 00		1132 1066 1066	94.2	263	5.6 2.6 2.6 2.6	0.8 0.7 0.7		2702 2581 2587	95.5 95.7	29.0 7.7.7 8.7.8	6.4 6.2 6.2	6.1.8.1		4472 4251 4295	95.1 96.0	20.7 20.7 20.9	10.2	3.0	- 76 – 79 76 – 79
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		2050 665 2235					4304 4234 4394		100.0 98.4	10.6 10.5 10.9			9307 9234 9430		100.0 99.2	22.2 22.0 22.5	6.3 6.3		20510 20462 20732		100.0	49.1 49.0 49.6	14.2 14.2 14.2 4.4	76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. n.a.		0:0			n.a n.a		0.0	0.0	0.0		n.a. n.a.		0.0	0.0	0.0		n.a. n.a.		0.0	0.0	0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.			2050	-				4304	L	100.0	10.6	2.9		9307		100.0	22.2	6.4		20510		100.0	49.1	14.2	62 - 92
Final	Electricity	reference scenario/ additional energy efficiency/		32100		1 01	100.0 20.8		31800			100.0	21.6		33100			100.0	22.0		34200 32400			100.0	22.5	65
	Heating and cooling	reference scenario		00699		3			00009			901	0.1		56900			0 001	38.0		54800			001	35.7	99
		additional chergy emerchey:		00200		T			OOOOC			TOO	41.0		00000			100.0	20.00		OUCTC			100.0	1.00	6
	Transport	reference scenario $^{\prime}$ additional energy efficiency f		41704		100.0	0.0 27.0		40485			100.0	27.6		42002 42002			100.0	28.8		41779			100.0	29.0	89
	Total before aviation reduction	reference scenario f additional energy efficiency f		154500 154500			100.0		146600				100.0		148300 145600				100.0		149000				0.001	70
	Total after aviation reduction	reference scenario		150900			2.00		142800				2.23		143000				6,90		142000				2	72
E		additional energy efficiency.		manci			91.1		142/00				47.4		140200				6.06		130/00				6.4.9	۲)
larget		Iransport tuets target Overall renewable target ^g					1.3						4.0						7.5						15.0	59

• The percentages refer to the values in the column 'Iktoe' and express the share of the renewable technology in the sector-rotal (RES-4L, RES-4HC or RES-T, see values highlighted in bold).
• The percentages refer to the values in the column 'Iktoe' and express the share of the renewable technology in total RES ("applicable ration mechanisms, see value highlighted in bold).
• The percentages refer to the values in the column 'Iktoe' and express the share of the renewable technology in the secor total of the final gross energy consumption ("Additional contents") and express the share of the renewable technology in the solor intal gross energy consumption (Defore aviation of the Additional energy efficiency scenario), see values highlighted in bold).
• The column 'Iktoe' and express the share of the renewable technology in the total ratio and acceptors the share of the renewable technology in the total ratio and express the share of the renewable technology in the total ratio and the values in the column 'Iktoe' and express the share of the renewable electricity in road transport (times 2.2).
• The partial consumption 'values' for the 'year 2005 refer to the 'hase year' in 'Emplaine Table (see Table 47 tonge 64) or Table 56 (page 73).
• For the year 2005 and 2020 the share, as defined in Amer to 'Discrive to Discrive to prepared by the European Commission and available for download at http://ear-tx.curryse.vdo?uri=CELEX.3209D0548:EN:NOT careari, where is referred to Tables 1, 4a, 10bb.). It and all 21 is nearn to the Template perpared by the European Commission and available for download at http://ear-tx.curryse.ev.or.

European Union, EU-27

			[TWh]	Mtoe	2005	%اہ ا	21% [2%] _q	(TWh)	[Mtoe]	2010	_	[%]	p1%J	[TWh]	Mtoe	2015	ا%ا _ه	[%]د	p[%]	[TWh]	[Mtoe]	2020			p[%]	Page
Renewable	Electricity	Hydropower < 1MW	=	-										12	-	1.3	9.0	0.3	0.1	13	-				0.1	103
production		Hydropower IMW - 10 MW Hydropower - 10 IMW Hydronower (silvioral)	29 34 341 341	25.3										37 299 354	363	33.2	14.2	1.8 1.8 1.0 1.0	0.3	9 6 8	£ 7.2		10.9		233	103 103
		Geothermal	s	0										7	-	8.0	0.3	0.2	0.1	=	-		0.4		0.1	110
		Solar photovoltaic Concentrated solar power Solar (subtoral)	-0-	000				l						25 6 9	4 - v	5.7	2.5 0.4 2.9	2.0	0.00	83 03 03	L 610		0.7		0.0	121
		Tidal, wave and ocean energy	-	0										-	0	0.1	0.0	0:0	0:0	7	-		0.2		0:0	128
		Onshore wind Offshore wind Wind power (subtotal)	67 70	909										258 50 309	25 4 72	28.6 5.5 34.3	12.2 2.4 14.7	7.6 1.5 9.1	1.9 0.4 2.2	352 142 495	30 12 43		12.4 5.0 17.4		2.6 1.0 3.6	139 139 139
		Solid biomass Biogas Bioliquids Riomass (surheral)	\$21-6	v-0v				29 29						4413	04-2	12.6 6.4.9 8.8	2.1 0.5 0.5	3.3 1.3 0.3	0.8	155 45 13 75 75	13		4.2.0.8		0.5	149 149 149
		Total (according to Template Tables 10a/b) Sum of all technologies (Template Tables 10a/b) Gross final RES-E consumption (Template Table 4a)	n.a. 479	n.a. 41										n.a. 901	n.a. 77 76	0.0 100.0 98.5	0.0 42.8 42.1	0.0 26.5 26.1	0.0 6.5 6.4	n.a. 1217	n.a. 105 103		0.0 42.8 42.1		0.0 8.9 8.7	
	Heating and cooling	Geothermal		0				0		1					-	1.6	0.7	0.3	0.1		3		Ξ:		0.2	154
		Solar thermal		-											3	3.6	1.7	9.0	0.3		9		2.6		0.5	160
		Solid biomass Biogas Bioliquids Bioliquids Biomass (subtoal)		846					, , , ,						96 £ 4 £	78.1 3.4 4.8 86.3	36.6 1.6 40.4	0.5 0.8 0.8	5.6 0.3 0.3 6.2		18 2 4 9		33.1 2.1 1.8 37.0		6.9 4.0 4.7	168 168 168
		Agendaemal hagt nume		۔ ا											j	200			1 0		ν ν		3,6			174
		Aerourema neat pumps Geothermal hear pumps Hydrothermal hear pumps Renewable energy from heat pumps (subtotal)		000-				200-							4701	8.7 8.4 8.4 8.6	13 07 13 13 13 14 10	0.00	0.00		0 4 - 2		0.2 0.2 5.0		0.0	4/1 4/1 4/1
		Total (according to Template Table 11) Sum of all technologies (Template Table 11) Gross final RES-H/C consumption (Template Table 4a)		n.a. 54 55				1000	200						n.a. 85 85	0.0 100.0 100.0	0.0 46.8 8.8	0.0 15.9 15.9	0.0 7.2 7.2		n.a. 112 112		0.0 45.6 45.6		0.0 9.5 9.5	- 76 – 79
	Transport	Bioethanol / bio-ETBE		-											5	22.8	2.7	1.6	4.0		7		3.0		9.0	180
		Biodiesel		2	1				1						15	6.99	8.0	4.6	1.2		22		8.8		1.8	186
		Hydrogen from renewables		0				10		1					0	0.0	0.0	0.0	0.0		0		0.0		0.0	190
		Renewable electricity		-	1							1			2	9:0	Ξ	9.0	0.2		3	1	1.3	1	0.3	198
		Other biofuels		0						1					0	1.2	0.1	0.1	0.0		-		0.3		0.1	204
		Total (according to Template Table 12) Sum of all technologies (Template Table 12) Gross final RES-T consumption (Template Table 4a) RES-T including Article 21.2 (Template Table 4b)		ë.4 4 4	0.0 100.0 92.5 98.5	0.0 3.9 4.2 4.2	0.0 1.4 1.3 0.3 1.4 0.4 1.4	10 + 6 +	n.a. 15 15 16		0.0 11.2 11.0 11.5	0.0 6.4 8.8 0.0	0.0		n.a. 22 21 23	0.0 100.0 98.2 104.9	0.0 12.0 11.8 12.6	0.0 6.9 6.8 7.2	0.0 1.8 1.9		n.a. 33 35	0.0 100.0 97.6 107.6	0.0 13.4 14.4 14.4	0.0 10.5 10.3 11.3	0.0 2.8 3.0	76 – 79 76 – 79
	All RES excl. co-operation mech.	Gross final RES consumption (Template Table 4a) Sum totals Template Tables 10a/b, 11, 12 (corr. Art 5(1)) Sum all technologies in Template Tables 10a/b, 11, 12		99 100 100				10.00	13,	r : 8	100.0				181 n.a. 184		0.0	57.4 0.0 58.4	15.3 0.0 15.5		245 n.a. 249		0.00		20.7 0.0 21.1	76 – 79
	Co-operation mechanisms	Transfer from other Member States and third countries Transfer to other Member States		n.a. 0		0.0			n.a		0.0				n.a. 0		0.0	0.0	0.0		n.a. 0		0.0		0.0	76 – 79 76 – 79
	All RES incl. co-operation mech.	Total (Template Table 4a)		66					13,	7	100.0				181		100.0	57.4	15.3		245		100.0		20.7	62 - 92
Final consumption	Electricity	reference scenario ^f additional energy efficiency ^f		268		=	100.0 23.	_	28.28	× 6		100.0	23.9		307			100.0	24.7		329 304			_	25.7	64
	Heating and cooling	reference scenario ^f additional energy efficiency ^f		552 552		_	100.0 47	100	55.	۰. «		100.0	45.8		569			100.0	6.44		581 521			100.0	1.4	99
	Transport	reference scenario ^f additional energy efficiency ^f		299		=	100.0 25.7		32.	2 6		100.0	26.5		337			100.0	26.6		349			100.0	26.5	89
	Total before aviation reduction	reference scenario/ additional energy efficiency/		1166			100.4		121.	۳.۵			100.4		1266				100.6		1317				100.8	70
	Total after aviation reduction	reference scenario/ additional energy efficiency/		1162			0.001		120	× 4			0.001		1259				100.0		1307				100	72
Target		Transport fuels target Overall renewable target ⁹																							10.0	

The percentages refer to the values in the column 'Iktoe'] and express the share of the renewable technology in the sector total (RES-Fi. RES-H/C or RES-T; see values highlighted in bold).
 The percentages refer to the values in the column "Iktoe" and express the share of the renewable technology in total RES (if applicable in cluding co-operation mechanisms, see values highlighted in bold).
 The percentages refer to the values in the column "Iktoe" and express the share of the renewable technology in the sector total of the final gross energy consumption (*Additional energy efficiency, scenario), see values highlighted in bold).
 The percentages refer to the values in the column "Iktoe" and express the share of the renewable technology in the total faint gross energy consumption (*Additional energy efficiency, scenario), see value highlighted in bold).
 The presentages refer to the values in the column "Iktoe" in "Emphale and renewable electricity in road transport (times 2.5).
 The Till additional energy efficiency are renewable electricity in road transport (times 2.5).
 The Till additional energy efficiency are renewable electricity in road transport (times 2.5).
 For the years 2005 and submission and an additional energy efficiency are renewable electricity in road transport (times 2.0).
 For the years 2005 and 2015 2010 the shares as defined in Amer I of Directive 2009/2016 prepared by the European Commission and available for download at http://eur-lex.europa.eu/LexUriServ/Lex

Index

Additional energy efficiency scenario, see Fi-	Member State NREAP update 2011, 47
nal energy consumption	Trajectory table, 57
Aggregate NREAP	Aviation, see Final energy consumption
RES-E, 76–79	7. 1. 1
RES-E in transport, 76–79	Belgium
RES-H/C, 76–79	Country table, 208 , 209
RES-T, 76–79	Database issues, 33
Agriculture and fisheries (by-products)	Member State NREAP update 2011, 42
Biomass supply, 87	Trajectory table, 53
Agriculture and fisheries (direct)	Bio-ETBE, see Bioethanol / bio-ETBE
Biomass supply, 86	Biodiesel
Agriculture and fisheries (total)	Annual growth (energy), 185
Biomass supply, 85	Breakdown (energy), 186
Annual growth (capacity)	Energy consumption, 184
Biomass electricity, 145	Per capita (energy), 187
Geothermal electricity, 109	Per surface (energy), 188
Hydropower, 99	Bioethanol / bio-ETBE
RES-E in 27 Member States, 23	Annual growth (energy), 179
Solar electricity, 117	Breakdown (energy), 180
Tidal, wave and ocean energy, 127	Energy consumption, 178
Wind power, 135	Per capita (energy), 181
Annual growth (energy)	Per surface (energy), 182
Biodiesel, 185	Biomass electricity
Bioethanol / bio-ETBE, 179	Annual growth (capacity), 145
Biomass electricity, 148	Annual growth (energy), 148
Biomass heat, 167	Breakdown (capacity), 146
Final energy in 27 Member States, 18,	Breakdown (energy), 149
19	Capacity installed, 144
Geothermal electricity, 111	Electricity generation, 147
Geothermal heat, 155	Full load hours, 150
Heat pump, 173	Per capita (energy), 151
Hydropower, 102	Per surface (energy), 152
Other biofuels in transport, 203	Biomass heat
Renewable electricity in transport, 197	Annual growth (energy), 167
Renewable hydrogen in transport, 191	Breakdown (energy), 168
RES total in 27 Member States, 20, 26	Energy consumption, 166
RES-E in 27 Member States, 23	Per capita (energy), 169
RES-H/C in 27 Member States, 24	Per surface (energy), 170
RES-T in 27 Member States, 25	Biomass supply
Solar electricity, 120	Agriculture and fisheries (by-products).
Solar thermal, 161	87
Tidal, wave and ocean energy, 129	Agriculture and fisheries (direct), 86
Wind power, 138	Agriculture and fisheries (total), 85
Austria	Forestry (direct), 83
Country table, 244 , 245	Forestry (indirect), 84
Database issues, 37	Forestry (total), 82

Waste (industrial), 90	Luxembourg, 236 , 237
Waste (municipal), 89	Malta, 240, 241
Waste (sewage sludge), 91	Netherlands, 242 , 243
Waste (total), 88	Poland, 246 , 247
Breakdown (capacity)	Portugal, 248 , 249
Biomass electricity, 146	Romania, 250, 251
Hydropower, 100	Slovakia, 254, 255
Solar electricity, 118	Slovenia, 252 , 253
Wind power, 136	Spain, 224 , 225
Breakdown (energy)	Sweden, 258 , 259
Biodiesel, 186	United Kingdom, 260, 261
Bioethanol / bio-ETBE, 180	Cyprus
Biomass electricity, 149	Country table, 230 , 231
Biomass heat, 168	Database issues, 35
Heat pump, 174	Member State NREAP update 2011, 46
Hydropower, 103	Trajectory table, 55
Other biofuels in transport, 204	Czech Republic
Renewable electricity in transport, 198	Country table, 212 , 213
Solar electricity, 121	Database issues, 33
Wind power, 139	Member State NREAP update 2011, 43
Bulgaria	Trajectory table, 53
Country table, 210, 211	Trajectory table, 55
Database issues, 33	Database issues
Member State NREAP update 2011, 43	Austria, 37
Trajectory table, 53	Belgium, 33
Trajectory table, 33	Bulgaria, 33
Capacity installed	Cyprus, 35
Biomass electricity, 144	Czech Republic, 33
Geothermal electricity, 108	Denmark, 34
Hydropower, 98	Estonia, 34
RES-E in 27 Member States, 22	Finland, 38
Solar electricity, 116	France, 35
Tidal, wave and ocean energy, 126	Germany, 34
Wind power, 134	Greece, 34
Consumption, see Final energy consumption	Hungary, 36
Country table	Ireland, 34
Austria, 244, 245	Italy, 35
Belgium, 208 , 209	Latvia, 35
Bulgaria, 210, 211	Lithuania, 36
Cyprus, 230 , 231	Luxembourg, 36
Czech Republic, 212, 213	Malta, 36
Denmark, 214, 215	Netherlands, 36
Estonia, 218, 219	Poland, 37
European Union, EU-27, 262, 263	Portugal, 37
Finland, 256 , 257	Romania, 37
France, 226, 227	Slovakia, 37
•	
Germany, 216, 217	Slovenia, 37
Greece, 222, 223	Spain, 35
Hungary, 238, 239	Sweden, 38
Ireland, 220, 221	United Kingdom, 38
Italy, 228, 229	Deficit
Latvia, 232, 233	Flexible mechanisms, 95
Lithuania, 234, 235	Denmark

Country table, 214, 215	European Union, EU-27, see also Final en-
Database issues, 34	ergy in 27 Member States
Member State NREAP update 2011, 44	Country table, 262 , 263
Trajectory table, 53	Excess
Efficiency scenario, <i>see</i> Final energy consumption	Flexible mechanisms, 94
	Final energy consumption
Electricity consumption, <i>see</i> Final energy consumption	Efficiency – after aviation, 73
Electricity from biomass, see Biomass elec-	Efficiency – before aviation, 71
tricity	Electricity, 64, 65
Electricity from geothermal energy, <i>see</i> Geother-	Heating and cooling, 66 , 67
mal electricity	Reference – after aviation, 72
Electricity generation	Reference – before aviation, 70
Biomass electricity, 147	Transport, 68 , 69
Geothermal electricity, 110	Final energy in 27 Member States
Hydropower, 101	Annual growth (energy), 18, 19
RES-E in 27 Member States, 22	Energy consumption, 18
Solar electricity, 119	Gross consumption, 19
Tidal, wave and ocean energy, 128	Finland
	Country table, 256 , 257
Wind power, 137 Electricity in transport, <i>see</i> Renewable elec-	Database issues, 38
•	Member State NREAP update 2011, 48
tricity in transport	Trajectory table, 59
Electricity RES options, <i>see</i> Energy consumption	Flexible mechanisms
	Estimated deficit, 95
Energy consumption, see Final energy con-	Estimated excess, 94
sumption Biodiesel, 184	Forestry (direct)
Bioethanol / bio-ETBE, 178	Biomass supply, 83
	Forestry (indirect)
Biomass heat, 166 Final energy in 27 Member States, 18 ,	Biomass supply, 84
19	Forestry (total)
	Biomass supply, 82
Geothermal heat, 154	France
Heat pump, 172 Other hiefyels in transport 202	Country table, 226, 227
Other biofuels in transport, 202	Database issues, 35
Overall renewable energy share, 20, 27	Member State NREAP update 2011, 45
Renewable electricity in transport, 196	Trajectory table, 55
Renewable hydrogen in transport, 190	Full load hours
RES total in 27 Member States, 20, 26	Biomass electricity, 150
RES-H/C in 27 Member States, 24	Geothermal electricity, 112
RES-T in 27 Member States, 25	Hydropower, 104
Solar thermal, 160	Solar electricity, 122
Energy crops	Tidal, wave and ocean energy, 130
Land use, 92	Wind power, 140
Estimated deficit	
Flexible mechanisms, 95	General remarks
Estimated excess	Member State NREAP update 2011, 42
Flexible mechanisms, 94	Generation of electricity, see Electricity gen-
Estonia 210 210	eration
Country table, 218, 219	Geothermal electricity
Database issues, 34	Annual growth (capacity), 109
Member State NREAP update 2011, 44	Annual growth (energy), 111
Trajectory table, 54	Capacity installed, 108

Electricity generation, 110 Full load hours, 112 Per capita (energy), 113 Per surface (energy), 114	Database issues, 34 Member State NREAP update 2011, 44 Trajectory table, 54 Italy
Geothermal heat Annual growth (energy), 155 Energy consumption, 154 Per capita (energy), 156 Per surface (energy), 157	Country table, 228, 229 Database issues, 35 Member State NREAP update 2011, 45 Trajectory table, 55
Germany	Land use
Country table, 216 , 217	Energy crops, 92
Database issues, 34	Latvia
Member State NREAP update 2011, 44	Country table, 232, 233
Trajectory table, 54	Database issues, 35
Greece	Member State NREAP update 2011, 46
Country table, 222 , 223	Trajectory table, 56
Database issues, 34	Lithuania
Member State NREAP update 2011, 44	Country table, 234, 235
Trajectory table, 54	Database issues, 36 Mambar State NREAR undete 2011, 46
Growth, see Annual growth	Member State NREAP update 2011, 46 Trajectory table, 56
Heat from biomass, see Biomass heating	Luxembourg
Heat from geothermal energy, see Geother-	Country table, 236, 237
mal heating	Database issues, 36
Heat pump	Member State NREAP update 2011, 46
Annual growth (energy), 173	Trajectory table, 56
Breakdown (energy), 174	riagectory tubic, co
Energy consumption, 172	Malta
Per capita (energy), 175	Country table, 240 , 241
Per surface (energy), 176	Database issues, 36
Heating, see Final energy consumption	Member State NREAP update 2011, 47
Heating RES technologies, see Energy con-	Trajectory table, 57
sumption	Member State NREAP update 2011
Hungary	Austria, 47
Country table, 238 , 239	Belgium, 42
Database issues, 36	Bulgaria, 43
Member State NREAP update 2011, 46	Cyprus, 46
Trajectory table, 56	Czech Republic, 43
Hydrogen, see Renewable hydrogen	Denmark, 44
Hydropower	Estonia, 44
Annual growth (capacity), 99	Finland, 48 France, 45
Annual growth (energy), 102	General remarks, 42
Breakdown (capacity), 100	Germany, 44
Breakdown (energy), 103	Greece, 44
Capacity installed, 98	Hungary, 46
Electricity generation, 101 Full load hours, 104	Ireland, 44
	Italy, 45
Per capita (energy), 105 Per surface (energy), 106	Latvia, 46
Tel surface (chergy), 100	Lithuania, 46
Installed capacity, see Capacity installed	Luxembourg, 46
Ireland	Malta, 47
Country table, 220, 221	Netherlands, 47

Dalamid 47	Colon the amount 162
Poland, 47	Solar thermal, 163
Portugal, 47	Tidal, wave and ocean energy, 132
Romania, 47	Wind power, 142
Slovakia, 48	Poland 246 247
Slovenia, 48	Country table, 246 , 247
Spain, 45	Database issues, 37
Sweden, 48	Member State NREAP update 2011, 47
United Kingdom, 49	Trajectory table, 57
N 4 1 1	Portugal
Netherlands	Country table, 248 , 249
Country table, 242, 243	Database issues, 37
Database issues, 36	Member State NREAP update 2011, 47
Member State NREAP update 2011, 47	Trajectory table, 58
Trajectory table, 57	D. C
	Reference scenario, see Final energy consump
Other biofuels in transport	tion
Annual growth (energy), 203	Renewable electricity in transport
Breakdown (energy), 204	Annual growth (energy), 197
Energy consumption, 202	Breakdown (energy), 198
Per capita (energy), 205	Energy consumption, 196
Per surface (energy), 206	Per capita (energy), 199
Overall renewable energy share	Per surface (energy), 200
Sum of 27 Member States, 20, 27	Renewable energy share, <i>see</i> Overall renewable energy share
Per capita (energy)	Renewable hydrogen in transport
Biodiesel, 187	Annual growth (energy), 191
Bioethanol / bio-ETBE, 181	Energy consumption, 190
Biomass electricity, 151	Per capita (energy), 192
Biomass heat, 169	Per surface (energy), 193
Geothermal electricity, 113	RES total in 27 Member States
Geothermal heat, 156	Annual growth (energy), 20, 26
Heat pump, 175	Energy consumption, 20, 26
Hydropower, 105	RES-E
Other biofuels in transport, 205	Aggregate NREAP, 76–79
Renewable electricity in transport, 199	RES-E in 27 Member States
Renewable hydrogen in transport, 192	Annual growth (capacity), 23
Solar electricity, 123	Annual growth (energy), 23
Solar thermal, 162	Capacity installed, 22
Tidal, wave and ocean energy, 131	Electricity generation, 22
Wind power, 141	RES-E in transport
Per surface (energy)	Aggregate NREAP, 76–79
Biodiesel, 188	RES-H/C
Bioethanol / bio-ETBE, 182	Aggregate NREAP, 76–79
Biomass electricity, 152	RES-H/C in 27 Member States
Biomass heat, 170	Annual growth (energy), 24
Geothermal electricity, 114 Geothermal heat, 157	Energy consumption, 24
·	RES-T
Heat pump, 176	Aggregate NREAP, 76–79
Hydropower, 106	RES-T in 27 Member States
Other biofuels in transport, 206	Annual growth (energy), 25
Renewable electricity in transport, 200	Energy consumption, 25
Renewable hydrogen in transport, 193	Romania 250 251
Solar electricity, 124	Country table, 250, 251

Database issues, 37	Trajectory table, 59
Member State NREAP update 2011, 47	
Trajectory table, 58	Tidal, wave and ocean energy
	Annual growth (capacity), 127
Share, see Overall renewable energy share	Annual growth (energy), 129
Slovakia	Capacity installed, 126
Country table, 254 , 255	Electricity generation, 128
Database issues, 37	Full load hours, 130
Member State NREAP update 2011, 48	Per capita (energy), 131
Trajectory table, 58	Per surface (energy), 132
Slovenia	Trajectory table
Country table, 252 , 253	Austria, 57
Database issues, 37	Belgium, 53
Member State NREAP update 2011, 48	Bulgaria, 53
Trajectory table, 58	Cyprus, 55
Solar electricity	Czech Republic, 53
Annual growth (capacity), 117	Denmark, 53
Annual growth (energy), 120	Estonia, 54
Breakdown (capacity), 118	Finland, 59
Breakdown (energy), 121	France, 55
Capacity installed, 116	Germany, 54
Electricity generation, 119	•
Full load hours, 122	Greece, 54
Per capita (energy), 123	Hungary, 56
Per surface (energy), 124	Ireland, 54
Solar thermal	Italy, 55
Annual growth (energy), 161	Latvia, 56
	Lithuania, 56
Energy consumption, 160	Luxembourg, 56
Per capita (energy), 162	<i>Malta</i> , 57
Per surface (energy), 163	Netherlands, 57
Spain Control 224 225	Poland, 57
Country table, 224, 225	Portugal, 58
Database issues, 35	Romania, 58
Member State NREAP update 2011, 45	Slovakia, 58
Trajectory table, 55	Slovenia, 58
Sum of 27 Member States	Spain, 55
Aggregate NREAP, 76–79	Sweden, 59
Gross final consumption, 18, 19	United Kingdom, 59
Gross final consumption (growth), 18,	Transport energy consumption, see Final en-
19	ergy consumption
Overall renewable energy share, 20, 27	Transport RES options, see Energy consump-
RES total, 20, 26	tion
RES total (growth), 20, 26	
RES-E, 22	United Kingdom
RES-E (growth), 23	Country table, 260, 261
RES-H/C, 24	Database issues, 38
RES-H/C (growth), 24	Member State NREAP update 2011, 49
RES-T, 25	Trajectory table, 59
RES-T (growth), 25	y y, - -/
Sweden	Waste (industrial)
Country table, 258 , 259	Biomass supply, 90
Database issues, 38	Waste (municipal)
Member State NREAP update 2011, 48	Biomass supply, 89
1	11 4

Waste (sewage sludge)

Biomass supply, 91

Waste (total)

Biomass supply, 88

Wind power

Annual growth (capacity), 135

Annual growth (energy), 138

Breakdown (capacity), 136

Breakdown (energy), 139

Capacity installed, 134

Electricity generation, 137

Full load hours, 140

Per capita (energy), 141

Per surface (energy), 142